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About This Book 

Introduction to Applied Statistics for Psychology Students, by Gordon 
E. Sarty (Professor, Department of Psychology, University of 
Saskatchewan) began as a textbook published in PDF format, in 
various editions between 2014-2017. The book was written to meet 
the needs of University of Saskatchewan psychology students at the 
undergraduate (PSY 233, PSY 234) level. 

In 2019-2020, funding was provided through the Gwenna Moss 
Centre for Teaching and Learning, along with technical assistance 
from the Distance Education Unit, to update and adapt this book, 
making it more widely available in an easy-to-use and more 
adaptable digital (Pressbooks) format. The update also made 
revisions so that the book could be published with a license 
appropriate for open educational resources (OER). 

OERs are defined as “teaching, learning, and research resources 
that reside in the public domain or have been released under an 
intellectual property license that permits their free use and re-
purposing by others” (Hewlett Foundation). This textbook and other 
OERs like it are openly licensed using a Creative Commons license, 
and are offered in various digital and e-book formats free of charge. 

Printed editions of this book can be obtained for a nominal fee 
through the University of Saskatchewan bookstore. 

Licensing and Copyright 

Licensing 

Except where otherwise noted (see notes below on the copyright 
for SPSS screenshots), the content of this book is licensed under 
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a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 
International License. Under the terms of the CC BY-NC-SA license, 
you are free to copy, redistribute, modify or adapt this book as 
long as you provide attribution. You may not use the material for 
commercial purposes. If you remix, transform, or build upon the 
material, you must distribute your contributions under the same 
license as the original. Additionally, if you redistribute this textbook, 
in whole or in part, in either a print or digital format, then you must 
retain on every physical and/or electronic page an attribution to 
the original author(s). 

Copyright: SPSS Screenshots 

SPSS Inc. was acquired by IBM in October, 2009. Reprints of images 
(i.e., screenshots) from IBM® SPSS® Statistics software (“SPSS”) 
appear courtesy of International Business Machines Corporation, © 
International Business Machines Corporation. IBM, the IBM logo, 
ibm.com, and SPSS are trademarks or registered trademarks of 
International Business Machines Corporation, registered in many 
jurisdictions worldwide. Other product and service names might 
be trademarks of IBM or other companies. A current list of IBM 
trademarks is available on the Web at “IBM Copyright and 
trademark information” at www.ibm.com/legal/copytrade.shtml. 
This consolidated credit paragraph and corresponding copyright 
notices must be listed on a title page or other conveniently viewable 
location where any reprints of this material appear. Any repurposing 
of the material in this book should also follow these same 
requirements. 

The University of Saskatchewan Open Press obtained specific 
permissions from IBM to reprint IBM SPSS Statistics screen images 
for the purposes of publishing this book, according to the 
conditions outlined here. Individuals who wish to use, duplicate, or 
redistribute any of these images are advised to do so in compliance 
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with copyright law or to contact IBM directly for permissions: 
http://www.ibm.com/contact/submissions/extsub.nsf/copyright. 
If any derivative version of this book (i.e., remixed, transformed, 
modified, or built-upon version) is created, additional copyright 
permission from IBM should be acquired for including any of their 
images in the derivative version before it is released. 

Cover Image 

Cover image by Ron Borowsky and Gordon Sarty, used for public 
talks and released with a CC BY-NC-SA license. The statistical 
methods that you will learn in this course were necessary to 
produce the functional MRI (fMRI) brain maps illustrated on the 
cover. In particular, a one-way ANOVA technique was used to detect 
the brain activations shown in the images1. The study shown was 
designed to reveal ventral and dorsal stream processing for ‘what’, 
‘where’ and ‘how’ interpretations of words and pictures presented 
to the experimental subjects while they were in the Magnetic 
Resonance Imager (MRI)2. 

1. Sarty GE, Borowsky R. “Functional MRI Activation Maps 
from Empirically Defined Curve Fitting”, Concepts in 
Magnetic Resonance Part B (Magnetic Resonance 
Engineering), 24B, 46-55, 2005. 

2. Borowsky R, Loehr J, Friesen CK, Kraushaar G, Kingstone 
A, Sarty GE, “Modularity and Intersection of ‘What’, 
‘Where’, and ‘How’ Processing of Visual Stimuli: A New 
Method of fMRI Localization”, Brain Topography, 18, 
67-75, 2005. 
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Statistical Software Used in 
this Book 

Throughout this book you will find Lessons that will take you 
through procedures to manipulate and analyze given data using the 
statistical software application IBM® SPSS® Statistics software 
(referred to more simply as “SPSS“) 

The history of SPSS Statistics goes back to the 1960s, and for 
many years it has been a standard for students and researchers 
working in the social sciences (SPSS, in fact, originally stood 
for Statistical Package for the Social Sciences, but was later changed 
to Statistical Product and Service Solutions). It is still an extremely 
popular and commonly-used package, and one that you are likely 
to find is used in labs and workplaces when you start to search 
for research and employment positions. For this reason, it is still 
essential for psychology graduates to have a solid grasp of how to 
use this program. 

Accessing SPSS Through Your School 

See the page University of Saskatchewan: Software Access for more 
details on how to do this. 

Downloading SPSS 

SPSS Statistics is not a free program. 
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A trial version of SPSS can be downloaded at: 
https://www.ibm.com/analytics/spss-trials 

If you really want to download the program (not in a trial version), 
see some information on student rates at: https://www.ibm.com/
analytics/academic-statistical-software; however, consider 
carefully how necessary this is before you spend any of your own 
money, and look carefully at any terms of licensing (i.e., some 
licenses may only give you access for a set number of months). 
Unless you are in a position where you can get an employer or 
research supervisor to pay for it, you may want to stick with the 
cost-free options available to you. 
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University of Saskatchewan: 
Software Access 

On-Campus Lab Access 

If you are a University of Saskatchewan student working on-
campus, all computers in the Arts & Science computer labs should 
have SPSS installed. See https://artsandscience.usask.ca/it/labs/ 
for a list of lab locations for the Saskatoon campus. 

Remote / Off-Campus Access 

Virtual Lab 

If you are a University of Saskatchewan student working remotely 
(off-campus), you can access SPSS via the Virtual Lab 
at http://vlab.usask.ca/. 

• Log in with your NSID. 
• Click “All” to expand the menu, then click on “Common U of S”. 
• Select “SPSS 26” (for SPSS) to launch the program within the 

Virtual Lab. 

More information on the Virtual Computer Lab (VLab) can be found 
here: https://wiki.usask.ca/x/lozDTg 

IMPORTANT NOTE: In order to open any of the given Data Sets 
(.sav files) in the Virtual Lab, they first need to be added to your 
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Cabinet drive. See the next sections for details on how to upload 
them. 

Accessing your Cabinet Drive 

The following links will guide you through gaining access your 
Cabinet drive so that you can then add files to it. Choose from the 
following options depending on if you are using Windows or Mac. 

Ensure you follow the steps for connecting to Cabinet, 
specifically. 

Try the steps without a VPN first. If you have issues, set up the 
VPN (Virtual Private Network) and try that way. The steps for 
setting up the VPN can be found here: https://wiki.usask.ca/x/
0YnDTg 

For Windows 

• How do I map a network drive like Cabinet, Jade or Datastore 
on Windows?: https://wiki.usask.ca/pages/
releaseview.action?pageId=1321437691 

For Mac 

• How do I map a network drive like Cabinet, Jade or Datastore 
on a Mac?: https://wiki.usask.ca/pages/
releaseview.action?pageId=1321438333 
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Adding Files to your Cabinet Drive 

First, download all of the .sav files from the Data Sets page onto your 
computer. 

Once you have access to your Cabinet drive, choose a designated 
folder within this drive where you will add the .sav files you want 
to work with; you may wish to create a new folder for this purpose, 
with a title like, e.g., PSY 233 files. 

From there you can copy or move the .sav files from your 
computer into your designated Cabinet folder. 

Then, they will be available for you to access them within the 
Virtual Lab. 

USask ICT Help 

Still stuck? Visit https://www.usask.ca/ict/help-support/it-
support-services.php for more one-on-one assistance. 
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Data Sets 

The dataset files listed here, which are used in the SPSS Lessons of 
this book, were created by Osama Bataineh. They are released with 
a CC BY-NC-SA 4.0 license. 

HyperactiveChildren.sav 
Caregiver.sav 
HeightLatency.sav 
AgeSmoker.sav 
HeadCircum.sav 
pHLevel.sav 
Methadone.sav 
BoneStrength.sav 
Relief.sav 
Hypertension.sav 
Cancer.sav 
CancerRecovery.sav 
CancerRecoveryAge.sav 
RetinalAnatomyData.sav 
MigraineTriggeringData.sav 
CancerTumourReduction.sav 
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1.1 Overview 

1.1.1 Textbook Layout, * and ** Symbols 
Explained 

This textbook has been designed for use in the statistics classes for 
psychology I teach at the University of Saskatchewan. It is designed 
to replace the expensive, and inadequate, texts that have 
traditionally been used for these classes. 

The courses covered by this text are: 

1. Univariate Statistics I: Chapters 1 to 10 (Psy 233, undergraduate 
course) 

2. Univariate Statistics II: Chapters 11 to 17 (Psy 234, 
undergraduate course) 

3. Multivariate Statistics: Future project (Psy 807, graduate 
course) 

Since these courses are applied statistics courses, students do not 
need to understand the derivations of the formulae and procedures. 
So these aspects, the “cookbook” approach, is what you need to 
learn to pass the applied statistics courses. 

Sections Marked with ** : But, in the sections marked with a ** 
there are detailed derivations for those who don’t want to believe in 
magic. Most psychology students will want to skip the ** sections. 

Sections Marked with * : Other sections are marked with a *; 
those sections contain applied statistics material that is not part of 
the course but is material that an experimental psychology student 
has a good chance of needing in experimental courses and research 
projects. (The graduate course Psy 805 is a review of Psy 233/234 
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with the additional * sections covered — so this text might also be 
used for Psy 805.) 

Psychology students at the University of Saskatchewan are 
required to learn how to use the statistics program SPSS. So 
“Lessons” for learning SPSS are included included throughout the 
text, with RStudio Lessons as an alternative using a different 
program. 

For Univariate Statistics I, the class material is organized in 3 
blocks: 

• Block 1 is an introduction to the basic tools of statistics and 
probability — Chapters 1 to 6. 

• Block 2 gets you into the ideas of hypothesis testing — Chapter 
9. 

• Block 3 is material on one- and two-sample -tests — Chapters 
9 and 10. 

1.1.2 Intro to Univariate Statistics 

So, to begin the course material proper, we may identify two “kinds” 
of statistics: 

1. Descriptive Statistics: The presentation, organization and 
description of data. (Graphs, means, standard deviations, etc.) 
Block 1 material is primarily about descriptive statistics. 
Descriptive statistics lead to ideas about probability – we will 
cover probabilities as given by functions known as the binomial 
distribution and the normal distribution. 

2. Inferential Statistics: The use of probability to infer things 
about a population from a sample through the use of hypothesis 
testing. Why do we need inferential statistics? Because it is 
usually impossible to measure (poll) an entire population. 
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The goal of Univariate Statistics I is to understand inferential 
statistics as embodied in the -tests. With blocks 2 and 3 we will 
build up the background for, and then learn 3 kinds of “ -tests” to 
infer means in populations. To foreshadow, let’s take a look at a 
simple example. Say we are interested in people’s heights. Let’s look 
at three situations, corresponding to the three types of -tests we 
will learn. 

i. One sample -test. The situation is as illustrated in Figure 1.1. 

Figure 1.1: One sample -test 

The -test will tell you when you may conclude that: 
    

Here the population could be the height of 10 year old 
children in Saskatchewan. The quantity  is the actual 
average height of 10 year old kids in Saskatchewan. You 
could, in principle, measure all the 10 year olds in 
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Saskatchewan but, in practice you can’t. Even if you spent 
the time finding them all and measuring their heights with 
a tape measure, they will be growing while you measure 
them all. It’s generally impossible to measure a population in 
practice for some reason. Practically, we can only measure 
a small sample of children from the population. That sample 
will have a mean that we denote with . The -test is a 
hypothesis test in which we compare the sample mean  to 
a hypothetical mean  and conclude with a probabilistic 
inference about . 

ii. Two sample -test. The situation is as illustrated in Figure 1.2. 

The t-test will tell you when you can believe that 
    

on the basis that . (The symbol  means 
“approximately equal to”.) 

Figure 1.2: Two sample -test 

Here the two populations could be 10 year olds (population 
1) and 11 year olds (population 2) in Saskatchewan. You might 
measure the two populations to get some idea about how 
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much 10 year old kids in Saskatchewan grow in one year. The 
two sample -test will give you information on the difference 
of the average heights in the population,  on the 
basis of the difference of the means of small samples that you 
take from each population, . 

iii. Paired -test. The situation is as illustrated in Figure 1.3. 

Say we want to know how fast a population grows in 1-year 
(e.g. pop = 10 year old kids). You can do the two-sample test 
with two separate populations but if you want to know how 
the environment affected the growth of the children (maybe 
you are concerned that they don’t get enough to eat) then 
the two-sample test is only an approximation. The genetic 
composition, the natural ability to grow, may be different 
in the two separate populations. To get at the effect of the 
environment, without the measurements being confounded 
by individual differences, we would take a sample of 10 year 
old kids from the population now and measure their heights. 
Then we wait a year and measure the height of the same 
sample of now 11 year old kids. Then we combine the two 
samples of data into one data sample of differences. The 
Paired -test will tell you if the average of differences (in 
heights) is zero or not. 
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Figure 1.3: Paired -test 
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1.2 Basic Definitions 

Data : The numbers we collect.  (Note the word data is plural. 
Datum is singular.)  Data may be grouped into sets, hence data set. 

Variable : A mathematical term used to denote something that 
can take on a range of values. There are important two types of 
variables : 

i. Independent variable (IV) : You set the value, a.k.a. explanatory 
variable. 

ii. Dependent variable (DV) : Value set (generally caused) by the 
independent variable, a.k.a. outcome variable. See Figure 1.4. 

Figure 1.4: In the equation of a line, y is the dependent variable, x is the 
independent variable. 

Random Variable : A dependent variable with random noise added. 
Value given by a stochastic process. We will only refer to random 
variables when discussing the theoretical relationship between 
probability distributions. Random variables, which we will denote 
with capital letters like , are defined by their probability 
distribution. A stochastic process produces values that form a 
probability distribution if you allow the process that generates their 
values run for long enough. 
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Note : Data are frequently called “variables” in anticipation of how 
they will be used. The software program SPSS uses that convention. 

1.2.1  Types of Data (important!) 

Qualitative variable : described by a word, e.g. gender with “values” 
male or female.  Qualitative variables are converted to discrete 
quantitative variables before analysis (e.g. male = 1, female = 2). In 
SPSS, you need to assign discrete numbers to qualitative variables 
in the “Values” column in the “Variable View” screen. 

Quantitative variable : two types : 

i.  Discrete variable : integer valued. In mathematical symbols 
 (read “the variable  belongs to [the set symbol 

means “belongs to”] the set of integers ”). e.g. -2, -1, 0, 1, 2, 3, 
etc. 

ii. Continuous variable : real valued (essentially any number). In 
mathematical symbols  (read “the variable  belongs to 
the set of real numbers ”). Geometrically,  is the number 
line. 

Note : Continuous variables can be converted to discrete variables 
by grouping : 

heights  5 ft = “short” (group value = 1) 
heights  5 ft = “tall” (group value = 2) 

Groups are also known as classes. We will be spending time 
defining classes in Chapter 2. Identifying what type of variable you 
data is will be the best way for you to decide what statistical test you 
need after you have learned and understood a number of different 
tests. 
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1.2.2 Measurement Scales (avoid this!) 

Some texts, and the SPSS helper program (although I have never 
tried it), attempt to classify data into “scales” that try to go 
somewhat beyond the integers and real numbers. I don’t think such 
classification is particularly useful and recommend that you avoid 
such classification. Nevertheless, it exists, so we will take a very 
quick look at such scales. (There is no agreement about their 
definitions from source to source.) 

One textbook that I used for a Univariate Statistics class for many 
years1 lists 4 types of scales : 

i. nominal : discrete categories with no order (e.g. profession or 
gender) – qualitative. 

ii. ordinal : discrete categories with order (e.g. grades, A, B, C ) 
– qualitative. 

iii. interval : quantitative measure but no zero: ratios make no 
sense (e.g. temperature – makes no sense to say that one day 
was twice as hot as another day). 

iv. ratio : has zero, and hence ratios have meaning – quantitative. 

SPSS uses : 

i. nominal.    
ii. ordinal. 

iii. scale : this scale is equivalent to the ordinal and ration scales 
listed above combined — as best as I can make out. 

SPSS lets you specify a measurement scale under the “Measure” 

1. Bluman AG, Elementary Statistics: A Step-by-Step 
Approach, numerous editions, McGraw-Hill Ryerson, 
circa 2005. 
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column in the “Variable View” screen. My recommendation is to 
leave it at “Unknown” or set it to “Scale”, otherwise it will try to 
restrict the statistical tests you can do when you don’t want it to. 
Measurement scales were invented to guide you to an appropriate 
statistical test but it doesn’t work that well. Instead, consider if 
your variable is continuous or discrete and then think about your 
situation. 

1.2.3 Kinds of Sampling and Studies 

This material properly belongs to a course on research methods 
and experimental design, but we will take a very quick look here. 
Ultimately your data need to be selected from the population at 
random. All mathematical statistical tests assume random sampling. 
The probability distributions that are used are defined by random 
sampling (the randomness — probability distribution relationship is 
pretty much a tautology). The real world is nit ideal, however, and 
you may be forced to deal with bias introduced by the following 
sampling schemes : 

1. Random Sampling : Samples selected from the population at 
random. 

2. Systematic Sampling : The population is ordered somehow (e.g. 
by house address or by phone number) and there is a rule for 
selecting samples (e.g. every 4th house or every 10th phone 
number). 

3. Stratified Sampling : The population is, or can be, ordered into 
groups and sampling is done at random from the groups. 

4. Cluster Sampling : Restrict sampling to a few groups of the 
population (a few strata). 

And, depending on the control you have over your independent 
variable, studies may be classified as : 
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1. Observational Study : Just watch. You have no control over the 
independent variables. 

2. Experimental Study : Control some variables to isolate other 
variables. The object is to manipulate the independent variable. 

Astronomy is a passion of mine; observing stars and planets through 
a telescope is an example of an observational study. Experimental 
studies can be affected (knowingly or unknowingly) by confound 
variables.  These are causes (independent variables) that you are not 
interested in but which affect the outcome (dependent variables) 
and can lead to data bias that you need to account for. Such issues 
are beyond the scope of an introductory statistics course. 
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1.3 Summation Convention 

For those of you who were ripped off in your high school 
education, a brief review of an important symbolic convention is 
given here. This convention will be used in the formulae that you 
will need to use. 

The capital Greek Sigma, , means sum or add. For example, 
suppose that you have 5 data sample values, represented abstractly 
by  and , or more abstractly (using set notation) 
by: 

,  (or ) 
If you want to add the 5 values you would write: 
    
or 

    

Sometimes people get lazy and leave off the limits on the 
summation sign  and write 

    

where it is hopefully clear that  is the summation index . We can 
also leave off the summation index and write 

    

just to remind us that we need to add up a bunch of numbers 
generically represented by . This last convention is useful for us 
because whenever we need to deal with a sum in a formula, we 
will get that sum from adding up numbers in a table that we have 
constructed. 
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2. DESCRIPTIVE 
STATISTICS: FREQUENCY 
DATA (COUNTING) 

Statistical inference is based on probability and probability is based 
on counting (at least the “frequentist” definition of probability – 
more about that in Chapter 4). So let’s start counting! 
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2.1 Frequency Tables 

Most material in this text is introduced first at an abstract level, 
then generally a step-by-step recipe is given and finally example 
problems are solved. This general to specific approach to learning 
statistics is the opposite of how many introductory statistics tests 
for the social sciences teach. For our first topic of frequency tables, 
the abstract concept is counting so let’s dive into the recipe with 
the expectation that you won’t get the complete picture until an 
example or two is worked. 

The construction of a frequency table proceeds in two steps : 
Step 1 : Determine the classes. There are two possibilities here, 

either the classes are given to you (pre-defined) or you have to 
define the classes based on the number of groups you want. So 
either 

i. Classes are given – nothing to do. 
ii. Define classes based on the number of groups you want. There 

are a number of different ways to group data into classes. We 
will cover a method here, different from Bluman’s, that works 
for whole number data only. Here are the steps for that 
method : 

(a) determine high data limit,  and the low data limit, . 
(b) compute the range 
(c) compute the class width : 

    

where  is the number of groups (or classes) you want. 
(d) Begin the frequency table’s first two columns : 
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Class Class Boundaries 

 to 
 to 

 to  to 

to 

Note : If the classes are given,  you won’t have, or need, the second 
column. 

In the class column above a specific way of labelling classes is 
given. (We will see how this works exactly in the upcoming 
example.) This is to make the class names useful for seeing that the 
classes are uniquely defined — there will be no data points on the 
boundaries of the classes. The numbers in the labels will be whole 
numbers, since we are assuming that the data are whole numbers1. 
In general we can label the classes any way we like. 

Also we need to note that this procedure of defining classes using 
the formula given in step (2)(c) will only work for whole number 
data. In general the process of defining classes is a lot looser; there 
are few rules beyond thinking about what kind of information you 
hope to capture by defining the classes. Since I want to keep you 
focused on learning the basic ideas and not worry about stuff that is 
not really statistics all assignment and exam questions that ask for 
the construction of classes from quantitative data will be for whole 
number data only. The procedure given here does work in general 
but some data points may end up on class boundaries and will have 

1. Whole numbers are 0 and the positive integers. 

28  |  2.1 Frequency Tables



to make up an arbitrary rule about which class the data point should 
go in. 

Step 2 : Construct the frequency table and fill it in : 
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A B B AB O 

O O B AB B 

B B O A O 

A O O O AB 

AB A O B A 

The last number in the cumulative frequency column, , should 
equal number of data points as a check since it is the sum of the 
frequencies. And the sum of the relative frequencies will be 1 — we 
will see that this is an essential feature of probabilities. The tally 
column is optional. 

Example 2.1 : 25 army inductees were tested for blood type. The 
data are : 

 
 

 
 
 
Construct a frequency table. 
Solution : 

Step 1 : Classes are given : A    B   O   AB 
Step 2 : Construct frequency table : 

Class Tally Frequency Cumulative 
Freq. 

Relative 
Freq. 

A ||||| 5 5 5/25 = 0.20 

B ||||| || 7 12 7/25 = 0.28 

O ||||| |||| 9 21 9/25 = 0.36 

AB |||| 4 25 4/25 = 0.16 

The tally is actually silly in this case because you count2 all the 
instances of A for the class A, etc., and you’re done. The tally column 
will be more useful for the next example. 

Example 2.2 : Given the high temperature data for each of 50 
states for the month of July : 

2. The frequency of A is the number of times A is in the 
dataset, etc. ← the take-home concept here. 
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112 100 127 120 134 118 105 110 109 112 

110 118 117 116 118 122 114 114 105 109 

107 112 114 115 118 117 118 122 106 110 

116 108 110 121 113 120 119 111 104 111 

120 113 120 117 105 110 118 112 114 114 

Construct a frequency table using 7 classes. 
Solution : 
Step 1 : 
(a) High limit, H = 134 

Low limit, L = 100 
(b) Range: R = H – L = 134 – 100 =34 
(c) Class width: W = 
(d) (and continue to Step 2) : 
Step 2 : 

Class Class 
Boundaries Tally Frequency Cumulative 

Freq. 
Relative 

Freq. 

100 — 
104 

99.5 to 
104.5 || 2 2 0.04 

105 — 109 104.5 to 
109.5 ||||| ||| 8 10 0.16 

110 — 114 109.5 to 
114.5 etc. 18 28 0.36 

115 — 119 114.5 to 
119.5 13 41 0.26 

120 — 124 119.5 to 
124.5 7 48 0.14 

125 — 129 124.5 to 
129.5 1 49 0.02 

130 — 134 129.5 to 
134.5 1 50 0.02 

= 1 

Note how we can now use the tally column to keep track of our 
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counting. For example, for the class 100 — 104, we first count all 
the instances of 100 (there is 1), then 101 (none), 102 (none), 103 
(none) and 104 (one). The sum of the frequencies is  and 
the sum of the relative frequencies is 1. Imagine that this data set 
represented the whole population and not just a sample. Then if 
you picked a random state there would be a 0.16 probability that 
the temperature would be between 105 and 109 inclusive. On other 
words relative frequency = probability for a population. Hence the 
term frequentist definition of probability. 

You can also compute cumulative relative frequency in a 
frequency table. When you use SPSS to make a frequency table 
you will run up against the limitations of using black box canned 
software. SPSS produces only one style of frequency table and it 
doesn’t match what we’ve been doing. In fact SPSS won’t compute 
relative frequency; instead it computes “percentage”. You need to 
convert percentage to relative frequency in your brain by dividing 
by 100. 
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2.2 Plotting Frequency Data 

In general you may present your data, say in a report or paper, 
in tabular form or graphical form. Personally, I prefer graphical 
form — “a picture is worth a thousand words”. For frequency data, 
the frequency table is the tabular form. There are several ways of 
presenting the same data graphically, the primary way being the 
histogram: 

1. Histogram – plot of frequency data using steps 
(mathematically: “step functions”). 

2. Frequency polygon – plot of frequency data using straight lines 
(mathematically: “piece-wise linear functions”). 

3. Cumulative frequency graph. 
4. Pie charts, Pareto charts, Stem & Leaf plots – alternate ways of 

plotting frequency data 

As a first step to plotting frequency data, you will need to construct 
a frequency table. 

Example 2.3 : Continuing with the frequency table produced from 
the data given in Example 2.1 : 

Class Frequency Cumulative 
Freq. 

Relative 
Freq 

A 5 5 0.20 

B 7 12 0.28 

O 9 21 0.36 

AB 4 25 0.16 

We will demonstrate most of the graph types using these data. 
1. Histograms. First, the straight forward histogram is as shown in 
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Figure 2.1. This is a plot of the data in the frequency column of the 
frequency table. 

Figure 2.1 : Straight Forward histogram. A box or “step function” is used 
to show the frequency of each class. In this image, generated with SPSS, 
the classes are labelled with 1, 2, 3, and 4 which correspond to the classes 
A, B, O and AB. If we take these discrete quantitative class values 
literally, the class width is one. Keep that in mind when you look at 
Figure 2.2. 

Next, still under the category histograms, is the relative frequency 
histogram. The relative frequency histogram for the blood type data 
is shown in Figure 2.2. It is a plot of the data in the relative frequency 
column of the frequency table. 
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Figure 2.2 : Relative frequency histogram for the blood type data. 

Very Important Concept : Look at Figure 2.2 and define the width 
of each class to be 1. Then the area under the histogram “curve” is 

. So, if we image that our data sample of the 25 army inductees 
is a whole population, then the relative frequency histogram may 
be interpreted as giving the following probabilities for getting a 
particular blood type for someone selected randomly from the 
population: 

The probability of having type A blood is 0.20 (or 20 ). 
The probability of having type B blood is 0.28 (or 28 ). 
The probability of having type 0 blood is 0.36 (or 36 ). 
The probability of having type AB blood is 0.16 (or 16 ). 

2. Frequency Polygons. Frequency polygons are just another form 
of histogram. We have been talking about “area under the curve” to 
represent probability. The curve of a frequency polygon is a little 
bit smoother than the curve of a traditional histogram. Frequency 
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polygons can, of course be made for either straight frequency or 
relative frequency data. A frequency polygon for the relative 
frequency blood type data is shown in Figure 2.3. 

Figure 2.3 : Relative frequency polygon for the blood type data. Plot a dot at 
the center of each class at the -value of the relative frequency then connect 
the dots as shown. 

3. Cumulative Frequency Graph. Plotting the cumulative 
frequencies from the frequency table results in a cumulative 
frequency graph as shown in Figure 2.4. Cumulative relative 
frequencies can also be computed (add up relative frequencies as 
you move down the column) and plotted. 

The cumulative frequency graph shows the “area under the curve” 
(of the traditional histogram) from the beginning of the first class 
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up to the given point. Cumulative frequencies or cumulative relative 
frequencies with therefore show up later as areas under probability 
distribution curves up to a given point (it represents the probability 
of having a value equal to or less than the given value if that quantity 
is pulled at random from the population.) 

Figure 2.4 : Cumulative frequency graph for the blood sample data. Plot a dot 
at the end of the relevant class at a -value equal to the cumulative 
frequency. Then connect the dots as shown. 

4. Pie Chart. A pie chart is a round histogram. Everyone has seen a 
pie chart, it is intuitive. The angles in the pie chart are computed 
using: 

Angle = Relative Frequency . 
For the blood type data, the explicit angle calculations are : 
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Class Angle 

A 0.20  = 

B 0.28  = 

O 0.36  = 

AB 0.16  =  

Check Sum = 

The pie chart for the blood type data is shown in Figure 2.5. 

Figure 2.5 : Pie chart for the blood type data. It is a very good 
representation of the probability aspect of relative frequency. 
If you made the pie chart into a dart board and threw darts at 
it in a random fashion, then the probability of the dart 
landing in each class is equal to that class’s relative frequency. 

5. Pareto Chart. The Pareto chart is just an ordered histogram with 
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classes ordered from highest to lowest frequency. The classes need 
to be qualitative for this reordering to make sense of course. To 
construct a Pareto chart, writing an ordered frequency table down 
first will help : 

Class Frequency 

A 5 

B 7 

O 9 

AB 4 

Figure 2.6: Pareto chart for the blood type data. 

The Parato chart is plotted in Figure 2.6. The frequencies as ordered 
in a Parato chart can be given statistical meaning but that is a 
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subject beyond the scope of this course. Here you just have to be 
aware that such a chart exists and know how it is made. 

2.2.1 Stem and Leaf Plots 

A stem and leaf plot is a fancy kind of histogram that lets you see all 
your data instead of just class frequency information. 

The steps for making a stem and leaf plot are : 

1. Order the data (this is a frequently used, tedious, step for many 
procedures as we’ll see). 

2. Divide into classes of 10’s or 5’s (low decade and high decade). 
3. Use “leading” and “trailing” digits of the data values to make 

the plot. 

For step 3 you need to know what “leading” and “trailing” digits are. 
Let’s illustrate that with an example. 

Example 2.4 : Given classes: 50-54, 55-59, 60-64, 65-69, 70-74, 
75-79 or equivalently, divide the classes into 5’s and the data in order 
(i.e. with the tedious ordering step 1 already done) : 

|50,51,51,52,53,53,|55,55,56,57,57,58,59,|62,63,|65,65,66,66,6
7,68,69,69|72,73,|75,75,77,78,79| 

where the bars illustrate the division of the data into low and high 
decades, step 2. The first number of each data point is the leading 
digit (stem), the last, the trailing digit (leaf). So with this, step 3 leads 
to : 
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Stem Leaf 

5 0 1 1 2 3 
3 

5 5 5 6 7 7 
8 9 

6 2 3 

6 5 5 6 6 7 
8 9 9 

7 2 3 

7 5 5 7 8 9 

Notice how, since the numbers are all nicely lined up, that the 
stem and leaf plot is a histogram on its side. So you can visualize 
frequency information and see the values of the individual data 
points as well. One could use that information to compute accurate 
means from stem and leaf plots whereas, as we’ll see, “class centers” 
need to be used with histogram (frequency table) data to estimate 
means with grouped data formulae. 
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2.3 SPSS Lesson 1: Getting 
Started with SPSS 

The following lesson will take you through an introduction to IBM® 
SPSS® Statistics software (referred to hereafter as “SPSS”). 

First, you need to open SPSS. Ways to do that are detailed in the 
Front Matter of this book, in the section “Statistical Software Used 
in this Book“. Also in the Front Matter you will find the collection of 
provided Data Sets; download the file “HyperactiveChildren.sav” and 
open it in SPSS. 

You should see: 

This is the “Data View” window. It is one of the three windows 
you will see when you use SPSS. The other two windows are the 
“Variable View”  window and the “Output” window. You can get to 
the Variable View window either by clicking on the Variable View 
tab at the bottom of the window, or by double clicking one of the 
column headings (the “variable name”). But let’s talk about what’s on 
the Data View window before we look at the other two windows. 

The Data View window is arranged in the form of a “data matrix”, 
which is an essential structure for multivariate statistics. This is the 
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first trap that people who try to use SPSS fall into — they collect 
data, put the data into SPSS and then go looking for an appropriate 
statistical test using help or the built-in “statistics coach”. 
Multivariate statistics is advanced. We need to learn a whole lot of 
basics before we can competently use multivariate statistics. This 
textbook covers univariate statistics. We are only going to learn how 
to deal with one dependent variable at a time. So many of the first 
SPSS lessons will be about how to combine multiple variables into 
one variable for analysis. 

Back to the Data View window and the data matrix. The rows 
represent individual subjects in the study. In Psychology, the subjects 
(“participants”) are generally people but they could also be rats or 
schools or cities or whatever. To fix ideas, suppose the subjects 
are people. One line for each person in the study. The columns 
represent variables. SPSS doesn’t care what kind of variables you 
define (e.g. independent or dependent) so you need to keep track of 
their meaning yourself. As we said, we only need one independent 
variable for univariate tests. 

The variables need to be defined. This is done by either double 
clicking on the variable name at the top of a column or by clicking 
the “Variable View” button at the bottom. Either way, you’ll end up 
in the Variable View window that looks like : 

Each line in the Variable View window lists the attributes of the 
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variables listed in the Data View window. You can usually leave most 
of the attributes as they come by default. The big exception is the 
Values attribute — it’s important and we’ll come back to that after a 
quick look at the other attributes. 

The Name attribute gives the name of the variable as it appears 
at the top of the columns in the Data View window. Type should 
be Numeric if you want to use the variable in any kind of statistical 
calculation. Having this set to String will cause errors if you are 
trying to use the variable as a qualitative variable (selection is via a 
pull down menu that appears when you click on a cell). Qualitative 
variables need to be Numeric and they are handled with the Values 
attribute — as we’ll see shortly! The Width and Decimals attributes 
are just to format the appearance of the numbers in the Data View 
sheet; totally not critical. The Label is left over from early FORTRAN 
days. SPSS’s heart is written in FORTRAN and variable names in 
FORTRAN used to be limited to eight characters which frequently 
makes it awkward to have good name for the variable. With Label 
you can give the variable a good name. If the is a value for Label 
then that value will be used on table and graph outputs that SPSS 
makes. If Label is blank then SPSS will use Name on table and graph 
outputs. We will largely ignore missing value issues in this course 
so leave the Missing attribute at None. Columns and Align are again 
used to make the Data View presentation look a little better; totally 
not critical. Leave Measure at Unknown or Scale, otherwise SPSS 
will try to interpret your data for you. SPSS is not very good at that 
and will tend to give strange errors that will make no sense to you, 
so leave Measure at Unknown or Scale. Leave Role at Input; this is 
a relatively new feature of SPSS and I don’t know what it does, so 
don’t muck with it. 

Finally — the Values attribute! Here is where you make the link 
between a qualitative variable and the discrete values it needs to 
work in a computer setting. Let’s take a look at the gender variable. 
Clicking in the cell brings up a thing with three dots : 
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Clicking on the thing with three dots brings up a menu where you 
can define the connection between the qualitative description and 
your discrete number assignments : 

Here I have clicked on the 1.00 = “Male” line to show that the Value is 
1 (arbitrary discrete quantitative) and the Label is Male (qualitative). 
To enter new values, type them in the Value and Label box and then 
click Add to add them to the list. 

Let’s go back to the Variable View window to see how quantitative 
variables with discrete number assignments are handled. Look at 
the values in the sex variable column in the first image. The numbers 
1 and 2 are shown which represent Male and Female. To see that 
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representation explicitly, click on the 1-A icon at the top of the 
window. You will then see: 

There’s more. If you click on a cell in the gender variable, you will 
get a thing on the side of the cell and if you click on that thing, you 
will see: 

This pop-up allows you to change the value by clicking on the 
appropriate value. In one of your assignments you will get practice 
with entering qualitative data this way. In general, to enter data into 
SPSS from scratch, you can start by typing data into the Data View 
window and then fix up the attributes later in the Variable View 
window. For qualitative variables the best approach is to define the 
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variable first in Variable View, getting the proper values into the 
Values attribute. Then you can go back to the Data View window and 
enter the qualitative data either by pulling down the menu when the 
mode of the 1-A icon is to show the labels or by remembering the 
number assignment and entering the numbers when the 1-A icon is 
set to show values. 

Let’s move on to do some descriptive statistics and see what 
results will look like in the Output window. For this load in the 
“Caregiver.sav” file from the Data Sets: 

There are 50 subjects in this file and 10 variables. One of the things 
we’ll be learning, in later SPSS Lessons, is how to combine more 
than one variable into one variable. This is because we are studying 
univariate statistics which means we only want to deal with one 
dependent variable at a time. For now, lets pick on the variable 
CGDUR and see how we can generate descriptive statistics output. 
There are three ways to do this and they all begin in the Analyze 

 Descriptive Frequencies menu which looks like this (on a PC; 
very similar on a Mac): 
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Pick Frequencies… which brings up: 

Move the CGagecat variable over by clicking on the variable then the 
arrow button or just drag the variable over to get: 
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Let’s take a look at the submenus and set them up before we hit 
OK. First the Statistics… submenu. In that menu check off Mean ( ), 
Median (MD), Mode, Skewness, Kurtosis, Std. deviation ( ), Variance 
( ), Range ( ), Minimum ( ) and, Maximum ( ). We we look at 
all of those descriptive statistics in Chapter 3. 

Hit Continue, look at the Charts… menu and check off pie charts, 
just for fun: 
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Hit Continue. You can look at the Format… and Style… menus if 
you want, they are not particularly interesting. Make sure “Display 
frequency tables” is checked (this will be important when you do the 
assignments), then hit OK. The Output window will pop up and in 
that window you will see: 

The first table, Statistics, shows the descriptive statistics you asked 
for. Note, especially, for future reference (when we hit skewness 
in Chapter 3), the value of the skewness. It is . More to the 
point it is , or positive, meaning that the data set (CGagecatn) 
is right skewed or positively skewed. The second table, labeled 
“highestQualification” is the frequency table (note how the variable 
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Name and not the Label was used because the Label attribute for 
the highestQualification variable was blank). The structure of the 
frequency table is slightly different from how we will learn to 
construct one by hand. There is nothing you can do to make SPSS 
produce a frequency table that matches exactly like what you might 
want. There are limitations to using canned statistics software. 

Scrolling down the Output window you will see the pie chart: 

Lets look at the Descriptives… menu next: 
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Move the CGagecat variable over as before and make sure to check 
off the “Save standardized values as variables”. We’ll learn about 
standardized values ( -values) in Chapter 3. Take note, this is the 
only way to get SPSS to compute -values : 

Click the options menu and check off descriptive statistics to 
compute, as before (S.E. mean is Standard Error of the mean which 
we’ll get to eventually also, we’ll just leave it off for now): 

Hit Continue then OK and look at the results in the Output window. 
The output is straightforward: 
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In Chapter 3 we will learn that the mean of a -transformed variable 
is zero and the standard deviation is one. That is confirmed here. 
If you left the “Save standardized values as variables” box checked 
when you ran this, you’ll get another variable added in the Data 
View window — the -transform of the -transform. It’s the same, 
the -transform of a -transform give back the same numbers. 
But note that the skewness ( ) of the -transformed variable 
is the same as the skewness of the original variable. This means 
that -transforming a variable doesn’t change anything about the 
variable except its mean and standard deviation. This is important 
when it comes to using and interpreting any analyses based on the 

-transformed variable. 
Finally, let’s look at the Explore… menu: 
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Move CGagecat into the “Dependent List”. Don’t worry about “Factor 
List”, you should leave it blank (for future reference, “factor” is 
synonymous with “independent variable”): 

Take a look at the Statistics… menu. You can leave it as it is (we’ll be 
learning about Confidence Intervals later): 

Hit Continue and open the Plots… menu and check off the items as 
shown: 
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We will talk about these different plots soon. For now, hit Continue, 
the OK and look at the output. First the tables: 

The first table is a “missing data report” that many SPSS procedures 
will output as a matter of course. You can ignore the missing data 
reports. Pay attention to the “Descriptive” table (it is something 
you could be asked about on exams!). You can ignore the “Tests of 
Normality” table. Next the plots. The first one is a histogram: 
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After we cover skewedness in Chapter 3, come back to this picture 
and note how the histogram is right skewed. 

Next is the stem and leaf plot. Remember that the way to a stem 
and leaf plot in SPSS is through the Explore menu: 

You can ignore the Q-Q plots but note that a boxplot is produced: 
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This is not a very good boxplot. Again, we’ll be learning about 
boxplots later. 

Looking at stuff here in SPSS before covering the concepts in class 
is a very real situation that people face in real life. They will go to 
a program like SPSS in the hopes that it is all they need for data 
analysis. But it will likely produce output that you don’t understand 
if you don’t have a basic education in statistics. If provided with 
output from SPSS (e.g., on an exam) you should able to explain 
what the output means. For example, if given one of the tables 
shown above you should be able to determine what the standard 
deviation of a data set is and be able to use that number in a further 
calculation. It is also a good idea to do some calculations by hand 
when you first use SPSS for a procedure. If you can produce the 
same numbers as SPSS then you are sure you know what it is doing. 
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3.1 Central Tendency: Mean, 
Median, Mode 

Mean, median and mode are measures of the central tendency of 
the data. That is, as data are collected while sampling from a 
population, there values will tend to cluster around these measures. 
Let’s define them one by one. 

3.1.1 Mean 

The mean is the average of the data. We distinguish between a 
sample mean and a population mean with the following symbols : 

    
    
The formula for a sample mean is : 

    

where  is the number of data points in the sample, the sample 
size. For a population, the formula is 

    

where  is the size of the population. 
Example 3.1 : Find the mean of the following data set : 

84 12 27 15 40 18 33 33 14 4 

To illustrate how the indexed symbols that represent the data in the 
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formula work, they have been written below the data values. To get 
in the habit, let’s organize our data as a table. We will need to do 
that for more complicated formulae and also that’s how you need to 
enter data into SPSS, as a column of numbers : 

label 

84 

12 

27 

15 

40 

18 

33 

33 

14 

4 

Total 
= 

280 

Since  we have . 
☐ 

Mean for grouped data : If you have a frequency table for a 
dataset but not the actual data, you can still compute the 
(approximate) mean of the dataset. This somewhat artificial 
situation for datasets will be a fundamental situation when we 
consider probability distributions. The formula for the mean of 
grouped data is 

(3.1)   

where  is the frequency of group ,  is the class center of 
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group  and  is the number of data points in the original dataset. 
Recall that  so we can write this formula as 

    

which is a form that more closely matches with a generic 
weighted mean formula; the formula for the mean of grouped data 
is a special case of a more general weighted mean that we will look 
at next. The class center is literally the center of the class — the next 
example shows how to find it. 

Example 3.2 : Find the mean of the dataset summarized in the 
following frequency table. 

Class Class 
Boundaries 

Frequency, Midpoint, 

1 5.5 – 10.5 1 8 8 

2 10.5 – 15.5 2 13 26 

3 15.5 – 20.5 3 18 54 

4 20.5 – 25.5 5 23 115 

5 25.5 – 30.5 4 28 112 

6 30.5 – 35.5 3 33 99 

7 35.5 – 40.5 2 38 76 

sums n=  = 
20 = 490 

Solution : The first step is to write down the formula to cue you to 
what quantities you need to compute : 

    

We need the sum in the numerator and the value for  in the 
denominator. Get the numbers from the sums of the columns as 
shown in the frequency table : 
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☐ 
Note that the grouped data formula gives an approximation of the 

mean of the original dataset in the following way. The exact mean is 
given by 

    

So the approximation is that 

    

which would be exact only if all  in group  were equal to the 
class center . 

Generic Weighted Mean : The general formula for weighted mean 
is 

(3.2)   

where  is the weight for data point . Weights can be assigned 
to data points for a variety of reasons. In the formula for grouped 
data, as a weighted mean, treats the class centers as data points and 
the group frequencies as weights. The next example weights grades. 

Example 3.3 : In this example grades are weighted by credit units. 
The weights are as given in the table : 
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Course Credit Units, Grade, 

English 3 80 240 

Psych 3 75 225 

Biology 4 60 240 

PhysEd 2 82 164 

 = 12  = 297  = 
869 

The formula for weighted mean is 

    

so we need two sums. The double bars in the table above separate 
given data from columns added for calculation purposes. We will be 
using this convention with the double bars in other procedures to 
come. Using the sums for the table we get 

    

Note, that the unweighted mean for these data is 

    

which is, of course, different from the weighted sum. 
☐ 

3.1.2 Median 

The symbol we use for median is MD and it is the midpoint of the 
data set with the data put in order. We illustrate this with a couple 
of examples : 
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•  If there are an odd number of data points, MD is the middle 
number. 

Given data in order:  180  186  191  201  209  219  220 
                                                                                                         

                                     

• If there are an even number of data points, MD is the average 
of the two middle points : 

 Given data in order:  656  684  702  764  856  1132  1133  1303 
                                                                                                           

                                             
In these examples, the tedious work of putting the data in order 

from smallest to largest was done for us. With a random bunch of 
numbers, the work of finding the median is mostly putting the data 
in order. 

3.1.3 Mode 

In a given dataset the mode is the data value that occurs the most. 
Note that : 

• it may be there is no mode. 
• there may be more than one mode. 

Example 3.4 :  In the dataset 
, 9, 9, 14, , , 10, 7, 6, 9, 7, , 10, 14, 11, , 14, 11 

8 occurs 5 times, more than any other number. So the mode is 8. 
☐ 

Example 3.5 :  The dataset 
110, 731, 1031, 84, 20, 118, 1162, 1977, 103, 72 
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Class Class 
Boundaries Freq 

1 5.5 – 10.5 1 

2 10.5 – 15.5 2 

3 15.5 – 20.5 3 

4 20.5 – 25.5 5 (Modal Class) 

5 25.5 – 30.5 4 

6 30.5 – 35.5 3 

7 35.5 – 40.5 2 

has no mode. Do not say that the mode is zero. Zero is not in the 
dataset. 

☐ 
Example 3.6 : The dataset 

15,  20, 22,  26, 26 
has two modes: 18 and 24. This data set is bimodal. 
The concept of mode really makes more sense for frequency 

table/histogram data. 
☐ 

Example 3.7 : The mode of the following frequency table data is 
the class with the highest frequency. 

 
 
 
 
 
 

☐ 

3.1.4 

Midrange 

The midrange, which we’ll denote symbolically by MR, is defined 
simply by 

    

where  and  are the high and low data values. 
Example 3.8 : Given the following data : 2,  3,  6,  8,  4,  1. We have 
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☐ 

3.1.5 Mean, Median and Mode in 
Histograms: Skewness 

If the shape of the histogram of a dataset is not too bizarre1 (e.g. 
unimodal) then we may determine the skewness of the dataset’s 
histogram (which would be a probability distribution of the data 
represented a population and not a sample) by comparing the mean 
or median to the mode. (Always compare something to the mode, no 
reliable information comes from comparing the median and mean.) 
If you have SPSS output with the skewness number calculated (we 
will see the formula for skewness later) then a left skewed 
distribution will have a negative skewness value, a symmetric 
distribution will have a skewness of 0 and, a right skewed 
distribution will have a positive skewness value. 

1. For the purposes of deciding the skewness of a dataset 
in assignments and exams, you can assume that the 
histogram shape is not too bizarre. 
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Figure 3.1: A right skewed histogram (or distribution) generally has the mean 
and median to the right, or positive side of the mode. The tail of the histogram 
stretches to the right or positive side. 

Symmetric distribution 

Figure 3.2: A symmetric distribution (histogram) has the mean, median and 
mode all in the same place. Its shape is symmetric. 
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Negatively skewed or left skewed histograms 

Figure 3.3: A left skewed histogram (or distribution) generally has the mean 
and median to the left, or negative side of the mode. The tail of the histogram 
stretches to the left or negative side. 

3.1.6 Mean, Median and Mode in 
Distributions: Geometric Aspects 

To understand the geometrical aspects of histograms we make the 
abstraction of letting the class widths shrink to zero so that the 
histogram curve becomes smooth. So let’s consider the mode, 
median and mean in turn. 

Mode 
The mode is the  value where the frequency  is maximum, 

see Figure 3.4. More accurately the mode is a “local maximum” of 
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the histogram2 (so if there are multiple modes, they don’t all have to 
have the same maximum value). 

Figure 3.4: The mode is the maximum of the histogram (distribution). 

Median 
The area under the curve is equal on either side of the median. In 

Figure 3.5 each area  is the same. For relative frequencies (and so 
for probabilities) the total area under the curve is one. So the area 
on each side of the median is half. The median represents the 50/50 
probability point; it is equally probable that  is below the median 
as above it. 

2. **In calculus terms, local maximums and minimums (and 
inflexion points) are where the derivative equals zero, 

. 
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Figure 3.5: The median divides the area under the histogram into two equal 
areas . 

Mean 
The mean is the balance point of the histogram/distribution as 

shown in Figure 3.6. 

Figure 3.6: The mean is the balance point of the histogram. It is where the 
“first moments” of the area of the histogram balance. Here the moments are 

 and  balance. . 

**A proof that the mean is the center of gravity of a histogram: 
In physics, a moment is weight  moment arm : 
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where  is moment,  is weight and  is the moment arm (a 

distance). 
Say we have two kids, kid1 and kid2 on a teeter-totter (Figure 3.7). 

Figure 3.7 

Kid1 with weight  is heavy, kid2 with weight  is light. 
To balance the teeter-totter we must have 
    
The moment arm, , of the heavier kid must be smaller than the 

moment arm, , of the lighter kid if they are to balance. 
So now let’s define the center of gravity. If you have a bunch of 
weights  with corresponding moment arms  then the center 
of gravity (c of g) is the moment arm  (distance) that satisfies : 

    

where  is the total weight. 
With histograms, instead of weight  we have area . You can 

think of area as having a weight. (Think of cutting out a piece of the 
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blackboard with a jigsaw after you draw a histogram on it.) So for a 
histogram (see Figure 3.8): 

Figure 3.8 

(We assume, for simplicity but “without loss of generality”, that 
 are integers and also the classes. This is the case for discrete 

probability distributions as we’ll see.) So, for the c of g, 

    

translates to 

where we have used  because the class widths are one, 
so 

    

Because our “weight” is area,  is technically called the “1st 
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moment of area”. (Variance, covered next, is the “2nd moment of 
area about the mean”.) 

◻ 
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3.2 Dispersion: Variance and 
Standard Deviation 

Variance, and its square root standard deviation, measure how 
“wide” or “spread out” a data distribution is. We begin by using the 
formula definitions; they are slightly different for populations and 
samples. 

1. Population Formulae : 
Variance : 

(3.3)   

where  is the size of the population,  is the mean of the 
population and  is an individual value from the population. 

Standard Deviation : 

    
The standard deviation, , is a population parameter, we will 

learn about how to make inferences about population parameters 
using statistics from samples. 

2. Sample Formulae : 
Variance : 

(3.4)   

where  = sample size (number of data points),  = degrees 
of freedom for the given sample,  and  is a data value. 

Standard Deviation : 

    
Equations (3.3) and (3.4) are the definitions of variance as the 

second moment about the mean; you need to determine the means (
 or ) before you can compute variance with those formulae. They 

are algebraically equivalent to a “short cut” formula that allow you 
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to compute the variance directly from sums and sums of squares of 
the data without computing the mean first. For the sample standard 
deviation (the useful one) the short cut formula is 

(3.5)   

At this point you should figure out how to compute ,  and  on 
your calculator for a given set of data. 

Fact (not proved here) : The sample standard deviation  is the 
“optimal unbiased estimate” of the population standard deviation . 

 is a statistic”, the best statistic it turns out, that is used to estimate 
the population parameter . It is the  in the denominator 
that makes  the optimal unbiased estimator of . We won’t prove 
that here but we will try and build up a little intuition about what 
that should be so — why dividing by  should be better than 
dividing by . (  is known as the degrees of freedom of the 
estimator ). First notice that you can’t guess or estimate a value for 

 (i.e. compute ) with only one data point. There is no spread of 
values in a data set of one point! This is part of the reason why the 
degrees of freedom is  and not . A more direct reason is 
that you need to remove one piece of information (the mean) from 
your sample before you can guess  (compute ). 

Coefficient of Variation 
The coefficient of variation, CVar, is a “normalized” measure of 

data spread. It will not be useful for any inferential statistics that 
we will be doing. It is a pure descriptive statistic. As such it can be 
useful as a dependent variable but we treat it here as a descriptive 
statistic that combines the mean and standard deviation. The 
definition is : 

    

    

Example 3.9 : In this example we take the data given in the 
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following table as representing the whole population of size 
. So we use the formula of Equation (3.3) which requires us 

to sum . 

10 

60 

50 

30 

40 

20 

Using the sum in the first column we compute the mean : 

    

Then with that mean we compute the quantities in the second 
(calculation) column above and sum them. And then we may 
compute the variance : 

    

and standard deviation 

    
Finally, because we can, we compute the coefficient of variation: 

    

◻ 

78  |  3.2 Dispersion: Variance and Standard Deviation



Example 3.10 : In this example, we have a sample. This is the usual 
circumstance under which we would compute variance and sample 
standard deviation. We can use either Equation (3.4) or (3.5). Using 
Equation (3.4) follows the sample procedure that is given in Example 
3.9 and we’ll leave that as an exercise. Below we’ll apply the short-
cut formula and see how  may be computed without knowing . 
The dataset is given in the table below in the column to the left of 
the double line. The columns to the right of the double line are, as 
usual, our calculation columns. The size of the sample is . 

11.2  = 
125.44 

11.9  = 
141.161 

12.0 exercise  = 144 

12.8  = 
163.84 

13.4  = 
179.56 

14.3  = 
204.49 

To find  compute 

   

So 

    
Note that  is never negative! If it were then you couldn’t take 
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the square root to find . Also not that we have not yet determined 
the mean. We can do that now: 

    

And with the mean we can then compute 

    

◻ 
Grouped Sample Formula for Variance 
As with the mean, we can compute an approximation of the data 

variance from frequency table, histogram, data. And again this 
computation is precise for probability distributions with class 
widths of one. The grouped sample formula for variance is 

(3.6)   

where  is the number of groups or classes,  is the class 
center of group ,  is the frequency of group  and 

    

is the sample size. Equation (3.6) the short-cut version of the 
formula. We can also write 

    

or if we are dealing with a population, and the class width is one 
so that the class center , 

    

which will be useful when we talk about probability distributions. 
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In fact, let’s look ahead a bit and make the frequentist definition for 
the probability for  as  (which is the relative 
frequency of class ) so that 

(3.7)   

If we make the same substitution  in the 
grouped mean formula, Equation (3.1) with population items  and 

 in place of the sample items  and , then it becomes 

(3.8)   

More on probability distributions later, for now let’s see how we 
use Equation (3.6) for frequency table data. 

Example 3.11 : Given the frequency table data to the left of the 
double dividing line in the table below, compute the variance and 
standard deviation of the data using the grouped data formula. 

Class Class 
Boundaries Freq, 

Class 
Centre 

1 5.5 – 10.5 1 8 

2 10.5 – 15.5 2 13 

3 15.5 – 20.5 3 18 

4 20.5 – 25.5 5 23 

5 25.5 – 30.5 4 28 

6 30.5 – 35.5 3 33 

7 35.5 – 40.5 2 38 

The formula 
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tells us that we need the sums of  and  after we 
compute the class centres  and their squares  — these 
calculations we do in the columns added to the right of the double 
bar in the table above. With the sums we compute 

   

So 

    
The mean, from one of the sums already finished is 

    

and the coefficient of variation is 

    

◻ 
Now is a good time to figure out how to compute  and  (and 

) on your calculators. 
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3.3 z-score / z-transformation 

The -score is the result of transformation of data that converts 
a dataset of  values, , that has a mean of  and standard 
deviation  to a set of  values  that has a mean of  and 
a standard deviation of . It will be very useful when we need 
to compute probabilities associated with normal distributions. The 

-transformation is defined by 

    

    

Example 3.12 : Find the -scores of the data given in the left 
column of the table below. 

Data -score, 

18 324 (18-9.9)/6.2 = 1.3 

15 225 (15-9.9)/6.2 = 0.8 

12 144 (12-9.9)/6.2 = 0.3 

6 36 (6-9.9)/6.2 = -0.6 

8 64 (8-9.9)/6.2 = -0.3 

2 4 (2-9.9)/6.2 = -1.3 

3 9 (3-9.9)/6.2 = -1.1 

5 25 (5-9.5)/6.2 = -0.8 

20 400 (20-9.5)/6.2 = -1.7 

10 100 (10-9.5)/6.2 = 0.1 

The dataset size is . You need to compute the -score for 

3.3 z-score / z-transformation  |  83



each data value separately. To do the calculation, both  and  are 
needed. So in addition to the sum of the data, , we also need 
the sum of the  values. The work of getting those sums is shown 
in the table above. With the  and  sums we get 

    

and 

   

and 
Using these values for  and  in the third column of the table 

above, compute the -scores as shown. If we had computed the 
-scores more accurately, they would add up to zero, 
(the mean of the -scores is zero.) 

◻ 
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3.4 SPSS Lesson 2: Combining 
variables and recoding 

Frequently data collection results in a collection of many variables. 
This happens, for example, with tests or surveys where people 
answer questions on a 5 or 7 point Lickert scale where questions 
range from, say, “strongly agree” to “somewhat agree” to  to 
“strongly disagree”. A bunch of those questions may refer to, say, 
happiness and adding up the scores, perhaps averaging them, will 
lead to a single variable, one dependent variable, that becomes 
our measurement of happiness. This gives us not only a univariate 
variable that we can subject to a statistical test but likely gives us 
a stronger and more reliable measurement of happiness. A problem 
with combining variables in this way arises if the response “1” for 
“strongly agree” means happiness for one question (e.g. “I wake up 
happy”) and sadness in another question (e.g. “I go to bed sad”). In 
such a situation some of the variables will need to be reverse-scaled 
or recoded before they can be added. Let’s see how to combine and 
recode variables in SPSS. 

Open the file “Caregiver.sav” from the textbook Data Sets. This 
dataset is about the different attributes of diamonds such as its 
color, price, carat, cutting quality etc. Here one of the variables 
is cut\_new which basically represents the cutting quality of 
diamond and takes values from 1 to 5 depending on the cutting 
quality with 5 being the best quality. Now let’s assume that we need 
to reverse scale this variable to use it in other calculations in a 
meaningful manner. To recode cut\_new first open the Transform 

 Recode in Same Variables… menu : 
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You can choose the Recode into Different Variables… if you want 
to, instead. That choice will lead to the creation of a new variable 
that you would use in place of cut\_new for your analysis. With 
our choice of Recode in Same Variables… we will overwrite the old 
values of cut\_new with new ones. (This is a danger if you make a 
mistake.) Our job is now to map 1 to 5, 2 to 4, 3 to 3, 4 to 2 and 5 to 1, 
recoding the variable. First move the cut\_new variable over in the 
pop up menu : 

then hit the Old and New Values.. button that will bring up a new 
pop up menu. Next enter 1 under Old Value and 5 in New Value : 
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then hit Add : 

Continue this way to complete the recoding list : 
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Hit Continue, then OK. The variable cut\_new will now have the 
new values in the Data View window. 

Now suppose we want to add multiple variables to create a new 
variable. Let’s open the dataset Caregiver from the course website. 
This dataset is regarding the test scores of students from diverse 
background in UK. Here we will add the test scores of read, write, 
math and science to create a new variable totalscore. Pick the 
Transform  Compute Variable… menu : 

This will bring up a menu which is essentially the calculator feature 
of SPSS : 
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Fill in the menu as shown above. You can move variable names 
into the Numeric Expression box by double clicking on the variable 
name, by clicking on the variable name and the arrow or by simply 
typing it. There are fancier ways to get a sum of variables experesion 
in Numeric Expression, but we will keep it simple for now. The 
target variable name is totalscore which, after you hit OK, shows up 
as a new variable, ready for statistical analysis, in the last column in 
the Data View window : 

Let’s do a couple of (descriptive) analysis with this new variable. Let’s 
take Caregiver as our dataset. Suppose we want to find the median 
of the totalscore values. To do this task by hand, we need to put the 
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data in order from smallest to largest. This is tedious but SPSS can 
do it with a couple of mouse clicks (yes, yes SPSS can compute the 
median directly but whatever). There are a couple of approaches in 
SPSS to ordering, or ranking, data. One is to compute the rank, that 
is, give rank 1 to the lowest value, 2 to the next lowest up to  for the 
highest value. Pick Transform  Rank Cases and move totalscore 
into the Variable(s) box : 

This is a new menu for us, so let’s take a look at the submenus. First, 
the Rank Types menu : 

Pretty fancy. Much to advanced for our use, so let’s leave that one 
be, hit Continue. Next look at Ties… 

90  |  3.4 SPSS Lesson 2: Combining variables and recoding

https://openpress.usask.ca/app/uploads/sites/76/2020/01/CombineCare9.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/CombineCare9.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/CombineCare10.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/CombineCare10.png


SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

We will assign the average (mean) rank to ties in out classes. To 
understand the ties options, think of two people in a race who cross 
the finish line at exactly the same time, a tie. With the mean rank, 
they both come in 1.5 place. With lowest, they both come in 1st 
place, with highest, they both come in 2nd place. Hit Continue, the 
OK and a new variable Rtotalscore with be formed in the Data View 
menu : 

Here the variable RCG ranks the total score of the students. But it’s 
very difficult from this data view to identify which students’ rank 
the highest or lowest, let alone who falls in the middle to find the 
median. This is not quite what we are after to easily get the median. 
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Ranking will become useful on Psy 234 (in Chapter 16), but it’s not 
that useful for us now. What we need, is to shuffle the numbers 
around from lowest to highest (of course we can do that directly). 
To shuffle pick Data  Sort Cases : 

which brings up, after moving over the RCG total score variable : 

Keep the ascending button selected (sort from lowest to highest), 
then hit OK to sort the file : 
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Everything is sorted now. (Note how useful the id variable is now. If 
that wasn’t there, we’d lose track of who’s data was what.) Now if we 
scroll down, we will find that the middle two total test scores are 
both 210. Thus the median of total score is 210. 

As a final analysis of the Caregiver data, suppose we wanted some 
descriptive statistics for the male students separate from the female 
students. To do this we use the “split file” feature of SPSS. Select 
Data  Split File to get 

where the gender variable has been moved into the “Groups Based 
on” box — you will need to click on the “Organize output by groups” 
button also. We’ll also leave the “Sort the file by grouping variables” 
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(gender in this case), this will shuffle the file yet again, putting all the 
males and females together. So, when you hit OK the result is 

Now the file is sorted into Male and Female (the 1-A button at the 
top has been pressed). Also note that “Split by gender” appears on 
the lower right corner of the Data View window. Now let’s do a 
simple descriptive statistics analysis of the total score variable. The 
output looks like : 

To unsplit the file, go back to Data  Split File and hit the “Analyze 
all cases, do not create groups” button. This will remove the “Split” 
message from the lower right corner and when the descriptive 
statistics is run again, you will get : 
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From here, with the file unsplit, we can use gender as a factor to get 
separate descriptive statistics for males and female. Select Analyze 

 Explore and use gender as the factor, which results in : 

From here, with the file unsplit, we can use gender as a factor to get 
separate descriptive statistics for males and female. Select Analyze 

 Explore and use gender as the factor : 
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The result is : 
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4.1 Probability 

The basic definition of probability is a ratio of things you can count 
(a ratio of their frequencies) : 

(4.1)   

where 
 is the probability that event  happens, 

 is the number of ways  can happen and 
 is the total number of outcomes (all possibilities). 

Example 4.1 : What is the probability of drawing a queen from a 
deck of cards : 

   

▢ 
To use  mathematically we set 

    
Where, probability-wise: 

0 means  definitely will not occur, and 
1 means  definitely will occur. 

This is a method we can use instead of using percent. To compute 
probabilities, we first need to know how to count. 

Fundamental Counting Rule 
Say you have n events in order, and for event  there are  ways 

for it to happen. Then the number of ways for the  events to play 
out is : 
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(The giant pi symbolizes a multiplication convention in the same 
way that a giant sigma symbolizes a summation convention as 
described in Section 1.3.) 

Example 4.2 How many combinations are there on a lock with 3 
numbers? 

Lay out the events as : , , and 
. Note that each number can be anything from 0 to 9 giving 10 
possibilities ( ) for each event. So the number of possible 
lock combinations is 

    
Note that you could have guessed this because the combination 

range from 000 to 999 — counting in base 10. 
▢ 

Example 4.3 Suppose that a hardware store can produce paints 
with the following qualities : 

Colour : red, blue, white, black, green, brown, yellow (7 
colours) 

Type : latex, oil (2 types) 
Texture : flat, semigloss, high-gloss (3 textures) 
Use : indoor, outdoor (2 uses) 

How many ways are there to combine these qualities to produce 
a can of paint? 

Answer : From the above list 
 and the number of possible 

paint kinds is: 
    

▢ 
Applications of the Fundamental Counting Rule 
We are interested in applying the fundamental counting rule to 

two special, important cases : 

1. Permutations. 
2. Combinations. 

Let’s define each one. 
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1. Permutations. 

The number of ways, or permutations, of selecting  objects from a 
collection or  objects, while keeping track of the order of selection is 
1 

    

This formula follows from the fundamental counting rule. With 
 objects there are  ways to select the first object. After 

selecting the first object there are  ways to choose the 
second object so , etc. up to  : 

    

    

Example 4.4 : How many ways are there to choose 5 numbered 
balls from a bucket of 25 to make a lottery number? 

Answer :  possibilities. 
▢ 

      2. Combinations. 
The number of ways of selecting  objects from a collection of 

objects without caring about the order is : 

    

That last symbol  is colloquially called “  choose ”. 

The second last expression demonstrates the application of the 
fundamental counting principal, it says 

1. Recall that the definition of factorial follows 
 etc. 
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where  is just the number of ways of arranging  objects while 
caring about the order, . 

As a practical matter, never try to compute  It will usually 
be unimaginably big. Use the formula that directly shows the 
fundamental counting rule as shown in the following example. 

Example 4.5 : How many ways are there to select 10 balls from a 
bucket of 100? 

Answer : 

   

▢ 

The symbol  is also known as the binomial 

coefficient because it shows up in algebra when you expand 
expressions of the form . For example2 

    

   

2. You don't need this algebra for this statistics course. It's 
just interesting. 
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The binomial coefficients can be quickly computed using Pascal’s 
triangle : 

   

Referring to Pascal’s triangle we can quickly write 
   

for example. 
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4.2 Binomial Distribution 

Given a success/failure situation (or yes/no, black/white, any 2 
outcome, dichotomous situation) and a probability of success 

 (and so a probability of failure 
), what is the probability of achieving 

successes in  trials? In symbols1 what is (  successes |  trials)? 
Or with simpler notation, what is ? The answer is : 

(4.2)   

**Proof of the  formula 
Use the boxes we used in defining the fundamental counting rule 

to represent each trial. 
Consider . 
The probability that a success occurs is the definition of . So 

    

Consider . What is ? This is all failures : 
The probability of each failure is  so the probability of getting FF 

is . So 

    

(Note that  by definition. There is exactly one way 

to draw no things from a collection of 2.) 

1. Here the | is read as "given". 
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What is ? Each probability of  (  for the first 
one,  for the second one). So 

    

For  we have 

    

We can continue this way for  but this is clearly 
tedious. The way of “mathematical induction” is the formal way to 
proceed but let’s try a more intuitive approach. 

For  successes in  trials, consider our  boxes, then any given 
sequence with  successes will have  failures and so that 
given sequence will have a probability of . But how many 
specific sequences with  successes are there? Think of it this way. 
Of the  boxes, how many ways are there to write  S’s in the 
boxes? There are  possibilities (  boxes are available) to write the 
first S,  ways after that to write the second S, etc. But we 
don’t care which order we wrote the S’s into the boxes so divide by 

. In other words there are  specific sequences with 

successes. Putting it all together : 

    

▢ 
Example 4.6 : In bucket of 100 toys with 20 dinosaurs and 80 bugs, 

consider drawing a dinosaur a success. So  and 
. Let us make an approximation 

and assume that  does not change with each draw2 

2. **By assuming that  does not change, we will be lead to 
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the binomial distribution. If we more accurately assume 
that  changes with each draw we will be lead to the 
hypergeometic distribution. For fun, let's consider the 
case where  changes with each draw. It's just 
another application of the fundamental counting rule. To 

begin, there are  ways of 

drawing 10 toys from the bucket without caring if it is a 
dinosaur or a bug. This is the size of the sample space; it 
is how many ways there are to make a sample of size 10 
from the bucket of 100 choices; it is  in Equation 
(4.1). There are  samples of 10 in the bucket. 
If we want 3 dinosaurs in our sample, as in the example 
in text then of the 20 dinosaurs in the bucket, there are 

 ways to get 3 dinosaurs and 

 ways to get 7 bugs from the 80 

in the bucket. So there are 

 ways to draw 3 

dinosaurs and 7 bugs from the bucket. This number is 
 in Equation (4.1). And so 
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Say we want to know (3 successes 10 trials). In other words, 
what is the probability that if I take 10 toys out of the bucket that 
exactly 3 of them are dinosaurs? Using Equation (4.2) we find 

    

The actual process of doing this calculation is somewhat tedious 
and therefore error prone. So in a test, for example, you will want 
to use the Binomial Distribution Table included in this text in the 
Appendix. In the Binomial Distribution Table, you simply find the 
appropriate  and then  in the column on the left and then look 
under the appropriate  column to find  for the given . 

▢ 
The complete binomial distribution specifies the probabilities of 

all  successes from 0 to , and can be plotted as a histogram. 
Note that there is a binomial distribution for each  and . Let’s 
plot the binomial distribution for getting  successes (dinosaurs) in 
forming a sample of  toys with . The Binomial 
Distribution Table contains the relative frequency table for the 

   

Note how close this is to the answer from the binomial 
distribution of 0.201. 
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histogram that represents the binomial distribution shown in Figure 
4.1. 

Figure 4.1 : The binomial distribution for the example of forming samples of 
 toys with  representing the number of dinosaurs in the sample 

and  being the probability of selecting a dinosaur in forming the 
sample. Note that the probability of  = 8, 9 or 10 is not zero, just less than 
0.001. 

The binomial distribution is an example of a discrete probability 
distribution. It is a histogram of relative frequencies obtained by 
counting possibilities in sample space.3 

The mean and variance of any discrete distribution are given by 

    

3. Sample space is the set of all possible samples. 
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These two formulae come from the grouped data expressions 
 and , by 

substituting . If we substitute Equation 4.2 for 
 in these general equations we get 

    
    
which are the mean and variance for a binomial distribution with 

parameters  and . The mean is the expected value. 
Example 4.7 : For the bucket of toys example: 
    
So given any random sample of 10 toys we expect that 2 of them 

will be red. 
▢ 

4.2.1 Practical Binomial Distribution 
Examples 

The examples given here illustrate the sampling theory for forming 
samples from a dichotomous (with success/fail items; items of 
interest and no interest) population. In this situation we know 
exactly what is in the population and ask questions about what 
kind of samples can be formed and what is their probability. The 
sampling theory is completely described by the binomial 
distribution. Later, we will have a sampling theory based on the 
Central Limit Theorem which will lead us to the normal distribution. 
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In practically solving these kinds of problems keep in mind that 
you need to identify: ,  and . 

Example 4.8 : It was reported that 5  of Americans are afraid of 
being alone in a house at night. In a random sample of 20 Americans, 
what are the probabilities that the sample contains 

1. exactly 5 afraid people? 
2. at most 3 afraid people? 
3. at least 3 afraid people? 

Solution : First identify: ,  and the  as specific 
to each question : 

1. For this case, , so from the Binomial Distribution Table 
get . 

2. For this case , 1, 2 and 3 and we have to add up the 
probabilities 
From the Binomial Distribution Table: 

So 

3. , 4, 5, 6, 7, , 20 
From the Binomial Distribution Table: 

Since the probabilities of high  are too small to appear in the 
Binomial Distribution Table (and there would be many terms to 
consider if they weren’t) we should use the following trick : 
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▢ 
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4.3 SPSS Lesson 3: Combining 
variables - advanced 

In SPSS Lesson 2 we saw how we can take variables defined on a 
Lickert scale and add them together, reverse scaling if necessary, to 
produce a single, better, variable for analysis. This works because 
the Lickert scale variables all have the same “units” (number of 
answer choices). You can combine any variables that have the same 
units, like feet or years or whatever. But if the units are different, but 
the variables still measure the same thing, like, for example, number 
of diet days per week and calories eaten per meal both measure 
levels of healthy eating habits but it makes no sense to simply add 
two such variables. It is literally like adding apples and oranges. The 
solution is to -transform the variables you want to add first. The 
-transform converts whatever units the original variable has to the 

-transformed variable’s units of standard deviation distance from 
the mean. So when you add two -transformed variables you end up 
with another variable whose units are standard deviation distance 
from the mean. 

Let’s start by opening the file “HeightLatency.sav” from the Data 
Sets. There are two variables in this file that we will combine into 
fewer variables. We begin by combining the variables Height and 
Latency into a new variable. 
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SPSS screenshot © International Business Machines Corporation. 

Since Height and Latency have different units, we need to 
-transform them first by running a descriptive analysis, making sure 
you have the “Save standardized values as variables” box checked : 

SPSS screenshot © International Business Machines Corporation. 

Hit Ok. This will produce two new variables, visible in the Data 
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View window, called ZHeight and ZLatency. We don’t care about the 
actual descriptive statistics output here. Now you can simply add 
the -transforms to produce the required new variable : 

SPSS screenshot © International Business Machines Corporation. 

Now let’s combine a couple of sets of variables that have compatible 
units. First add ZHeight to ZLatency (note the fancy new way to add) 
to produce a new variable Sub : 

SPSS screenshot © International Business Machines Corporation. 
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The new variable shows clearly on SPSS sheet : 

SPSS screenshot © International Business Machines Corporation. 

Next we will make a conversion from a quantitative variable to a 
qualitative variable essentially by dividing the data into classes. First 
a simple case. Create the new variable Life from the variable Latency 
as the following : 
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SPSS screenshot © International Business Machines Corporation. 

We’ll need to do this in two steps. First pull up Transform 
Compute Variable and set it up so that 1 is in the Numeric 
Expression box. Then hit the If… button at the bottom left hand of 
the menu window to bring up : 

SPSS screenshot © International Business Machines Corporation. 
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Then click Continue, then hit OK. That will create the new 
LatencyCat variable, with missing values. Those values will be filled 
in the next step. 

SPSS screenshot © International Business Machines Corporation. 

Pull up Transform → Compute Variable again and, leaving 
LatencyCat where it is, put 2 in the Numeric Expression box, then 
hit the “If” button again and change the expression in the condition 
box, then hit Continue, then OK. Now LatencyCat is either 1 or 2 
with no missing values : 
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SPSS screenshot © International Business Machines Corporation. 

118  |  4.3 SPSS Lesson 3: Combining variables - advanced

https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp4Height9.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/Chp4Height9.png


5. THE NORMAL 
DISTRIBUTIONS 

5. The Normal Distributions  |  119





5.1 Discrete versus 
Continuous Distributions 

We can describe populations in terms of discrete variables (
) or continuous variables ( ). In the last chapter we saw how 
to describe discrete probability distributions with the example of 
the binomial distributions. Discrete probabilities need to be added 
in inferential statistics and this can lead to complicated formulae. 
Calculus turns sums into integrals1 which generally lead to simpler 
formulae. In the following table we compare, and show the 
relationship between, discrete and continuous variables and their 
associated probability distributions. 

1. If you have no calculus background, an integral is a way 
of calculating areas under curves. 
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Discrete Continuous 

• We have a finite number of 
values between the high and 
low values 

• A histogram plot of the 
random variables  may be 
interpreted as a probability 
distribution. 

• We have an infinite number of 
values between the high and 
low values. 

• With continuous random 
variables we have a probability 
density. 

By increasing the number of values in an appropriate limiting way you 
make 

 the discrete probability distribution 
approach a probability density. 

• The units of  are 
probability. 

• The units of  are 
probability density. 
Probabilities are given by 
areas under the curve only. 

We will be slurring our language and call a probability density, 
a probability distribution. So we’ll say normal distribution instead 
of normal density. Continuing the comparison, probability 
distributions and densities have means, moments, skewness, etc. : 

• Means and variances of a discrete probability distribution, 
, are given by the application of the grouped data 

formulae we saw in Chapter 4 : 

   

• Means and variances of a continuous probability density, 
 are given by the integrals : 
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Recall that the variance is the second moment of  about the 
mean . 

We don’t have to stop at the second moment about the mean. The 
third and fourth moments about the mean are called skewness and 
kurtosis respectively : 

Discrete Continuous 

Skewness 

Kurtosis 

SPSS will easily compute skewness and kurtosis.  is positive for 
a positively skewed distribution, negative for a negative skewed 
distribution. The  and  are “normalization” factors; they make 
the moments of the normal distribution simple. 

The moments of a probability distribution are important. In fact, 
if you specify all the moments of a distribution then you have 
completely specified the distribution. Let’s say that in another way. 
The specify a probability distribution you can either give its 
formula (as generally derived from counting) or you can give all its 
moments. The normal distribution with a mean of  and a variance 
of  is specified by the formula 

(5.1)   

or by its moments. The normal distribution with a mean of  and 
a variance of  is the only continuous probability distribution with 
moments (from first to second an on up) of: , , 0, 1, 0, 1, 0, 
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. The normal distribution is special that way among probability 
distributions. 
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5.2 **The Normal 
Distribution as a Limit of 
Binomial Distributions 

The results of the derivation given here may be used to understand 
the origin of the Normal Distribution as a limit of Binomial 
Distributions1. A mathematical “trick” using logarithmic 
differentiation will be used. 

First, recall the definition of the Binomial Distribution2 as 

(5.2)   

where  is the probability of success,  is probability 
of failure and 

1. The formula for the Binomial Distribution was 
apparently derived by Newton according to: Lindsay RB, 
Margenau. Foundations of Physics. Dover, New York, 
1957 (originally published 1936). For that claim, Lindsay & 
Margenau quote: von Mises R. Probability, Statistics, and 
Truth. Macmillan, New York, 1939 (originally published 
1928). The derivation of the Normal Distribution 
presented here largely follows that given in Lindsay & 
Margenau's book. 

2. In class we denoted the Binomial distribution as 
. Here we use  to avoid 

using too many P's and p's. 
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(5.3)   

is the binomial coefficient that counts the number of ways to 
select  items from  items without caring about the order of 
selection. Here  is a discrete variable, , with . 

The trick is to find a way to deal with the fact that  (
is a discrete variable) for the Binomial Distribution and  (

 is a continuous variable) for the Normal Distribution3 In other 
words as we let  we need to come up with a way to let 
shrink4 so that a probability density limit (the Normal Distribution) 
is reached from a sequence of probability distributions (modified 
Binomial Distributions). So let  represent the Normal 
Distribution with mean  and variance . We 
will show how  where each Binomial 
Distribution  also has mean  and variance 

. 
The heart of the trick is to notice5 that 

(5.4)   

This is perfectly true for the density . The trick is to 

3. Remember that the Normal Distribution is technically a 
probability density but we slur the use of the word 
distribution between probability distribution (discrete ) 
and probability density (continuous ) like everyone 
else. 

4.   for the Binomial Distribution. 
5. Remember that  and use the chain rule to 

notice this. 
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substitute the distribution  for the density  in the RHS 
of Equation (5.4) to get : 

(5.5)   

because . The trick is to now pretend that  is a 
continuous function defined at all ; we just don’t know what 
its values should be for non-integer . With such a “continuation” 
of  we can write6 

6. You can probably imagine many ways to continue the 
Binomial Distribution from  to . It doesn't 
matter which one you pick as long as the behaviour of 
your new function is not too crazy between the integers; 
that is,  should exist at all . 
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(..)  

Equation (5.8) has no limit; it blows up as . We need 
to transform  in such a way to gain control on  (getting it 
to shrink as ) and to get something that converges. To 
do that we introduce  and a new variable 

. With this transformation of 
variables, the chain rule gives 

(5.9)   

and the RHS of Equation (5.8) becomes, using 
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(..)  
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Using Equation (5.9), for the LHS, and Equation (5.14), for the RHS, 
Equation (5.8) becomes 
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(..)  

where  means terms that will go to zero as , and 

we have used the relation  to 

get Equation (5.16}) and  to go from Equation (5.17) to 
Equation (5.18). Dividing both sides of Equation (5.19) by  leaves 
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(5.20)   

Our transformation, with its , has given us the exact control 
we need to keep the limit from disappearing or blowing up. 
Integrating Equation (5.20) gives 

(5.21)   

where  is the a constant of integration. Switching back to the 
variable 

(..)  

To evaluate the constant of integration, , we impose 

 because we want  to be a probability 
distribution. So 

(5.25)   

so 

(5.26)   
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and 

(5.27)   

which is the Normal Distribution that approximates Binomial 
Distributions with the same mean and variance as  gets large. 

Figure 5.1 : The transformation  effectively shrinks the 

of the Binomial Distribution with mean  and variance 

 by pulling a continuous version  back to the constant 
Normal Distribution . Another way of thinking about it is that the 

transformation  takes the fixed Normal Distribution 
 to the Normal Distribution  that provides a better and better 

approximation of  as . 

You may be wondering why that transformation 
 worked because it seems to have been pulled 

from the air. According to Lindsay & Margenau, it was Laplace who 
first used this transformation and derivation in 1812. What this 
transformation does is pull the Binomial Distribution  back 
to have a mean of zero (by subtracting ) which keeps 
from running off to infinity and, more importantly, allows us to 
define a function  with  that has a constant variance 
of  that we can match to  when we transform back to 

 at each , see Figure 5.1. Looking at it the other way around, 
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the Normal Distribution7  with  is an 
approximation for Binomial Distribution  that 
“asymptotically” approaches  as . 

This is not the only way to form a probability density limit from 
a sequence of Binomial distributions. It is one that gives a good 
approximation of the Binomial Distribution when  is fairly small 

if the term  in Equation (5.18) becomes small quickly. If  is 

very small, this does not happen and another limit of Binomial 
Distributions that leads to the Poisson Distribution is more 
appropriate. When  and  are close to 0.5 or more generally when 

 and  then the Normal approximation is a good 
one. Either way, the density limit is a mathematical idealization, 
a convenience really, that is based on a discrete probability 
distribution that just summarizes the result of counting outcomes. 
Counting gives the foundation for probability theory. 

7. Our symbols here are not mathematically clean; we 
should write something like  instead of  or 

 composed with  at , , instead of . 
But to emphasize the intuition we use . In clean 
symbols, the function  asymptotically 

approaches  where . 

134  |  5.2 **The Normal Distribution as a Limit of Binomial Distributions



5.3 Normal Distribution 

Let us now take a detailed look at the normal distribution and learn 
how to apply it to probability problems (in sampling theory) and 
statistical problems. Its formula (which you will never have to use 
because we have tables and SPSS) is again: 

(5.28)   

The factor  is a normalization factor that ensures that the 
area under the whole curve is one: 

    

Without that factor we just have a bell-shaped curve 1 with the 
area under the curve equal to one we have a probability function 
since the total probability is one. For those with a bad math 
background, the letters in Equation (5.28) are:  2, 

 3,  = mean and  = standard deviation of the 
normal distribution. The normal distribution’s shape is as shown in 
Figure 5.2. 

1. **Whose shape is determined essentially by the shape of 
. Plot  and think about the square 

preventing any negative values for the argument. 
2. ** The number  is the natural base implied by functions 

whose values match how fast it changes, i.e. the 
derivative of the function is the same as the function. 

3. ** Of course,  comes from circles: = circumference/
diameter. 
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Figure 5.2: The normal distribution. It is a bell-shaped curve with its 
mode (= mean and median because it’s symmetric, ) centred 

on its mean . On the left is a distribution with a large  and on 

the right one with a smaller . 
To work with normal distribution, in particular so we can use the 

Standard Normal Distribution Table and the t Distribution Table 
in the Appendix, we need to transform it to the standard normal 
distribution using the -transform. We need to transform , 
which has a mean  and standard deviation  to  which has 
a mean of 0 and a standard deviation of 1. Recall the definition of the 

-transform: 

    

applying this to  gives 
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(5.29)   

If we substitute Equation (5.28) into Equation (5.29) and do the 
algebra we get : 

(5.30)   

Equation (5.30) defines the standard normal distribution, or as 
we’ll call it, the -distribution. 
Areas under  are given in the Standard Normal Distribution 
Table in the Appendix. 

5.3.1 Computing Areas (Probabilities) under 
the standard normal curve 

Here we learn how to use the Standard Normal Distribution Table 
to get probabilities associated with any old area under the normal 
curve that we can dream up. The general layout of areas under the 

-distribution is shown in Figures 5.3 and 5.4. 

Figure 5.3 : The -distribution is a probability distribution (total area = 1) and 
symmetric, so the area on either side of the mean (which is 0) is a half. You 
will need to remember this information as you calculate areas using the 
Standard Normal Distribution Table. 
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Figure 5.4 : The units of  in  are standard deviations. No matter what 
the measurement units of  were before the -transformation, the units of 
are “standardized” to be standard deviation units. With SPSS you will learn 
how to standardize ( -transform) variables so that you can sensibly combine 
multiple dependent variables into one dependent variable for univariate 
statistical analysis. The areas, probabilities, associated with each increment 
in  are shown here. 

Let’s divide the types of areas we want to compute into cases, 
following Bluman4. For all these cases we’ll use the notation 
to represent the area we look up in the Standard Normal 
Distribution Table associated with . 

Case 1 : Areas on one side of the mean. This is the case of finding 
an area between 0 (which corresponds to the mean before any 
-transformations) and a given . For this case we simply use the 

4. Bluman AG, Elementary Statistics: A Step-by-Step 
Approach, numerous editions, McGraw-Hill Ryerson, 
circa 2005. 
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tabulated values, , see Figure 5.5. This 
case also covers when  is a negative number: 

. 

Figure 5.5 : Case 1: Areas on one side of the mean. 

Example 5.1 : Find the probability that  is between 0 and 2.34. 
Solution : Look up  in the Standard Normal 

Distribution Table, see Figure 5.6. 
. (Note 

that it makes no difference whether we use  or  because the 
probability of a single value is 0. That’s why we need to use areas.) 

Figure 5.6 : The situation for Example 5.1. 
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▢ 
Example 5.2 : Find the probability that  is between -1.75 and 0. 
Solution : , 

see Figure 5.7. 

Figure 5.7 : The situation for Example 5.2. 

▢ 
Case 2 : Tail areas. A tail area is the opposite of the area given in 

the Standard Normal Distribution Table on one half of the normal 
distribution, see Figure 5.8. The tail area after a given positive 
is  or before a given negative 
value  is . 

Figure 5.8 : Case 2 : Tail areas. 
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Example 5.3 : What is the probability that ? 
Solution : 

, see Figure 5.9. 

Figure 5.9 : The situation for Example 5.3. 

▢ 
Example 5.4 : What is the probability that ? 
Solution : 

, see Figure 5.10. 
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Figure 5.10 : The situation for Example 5.2. 

▢ 
Case 3 : An interval on one side of the mean. Recall that 

for the -distribution. So we are looking for the probabilities 
 for an interval to the right of the mean 

or  for an interval to the left of the 
mean. In either case , see Figure 5.11. 

Figure 5.11: Case 3: An interval on one side of the mean. 

Example 5.5 : What is the probability that  is between 2.00 and 
2.97? 

Solution : 
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, see Figure 5.12. 

Figure 5.12: The situation for Example 5.5. 

▢ 
Example 5.6 : What is the probability that  is between -2.48 and 

-0.83? 
Solution : 

, see Figure 5.13. 
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Figure 5.13: The situation of Example 5.6. 

▢ 
Case 4 : An interval containing the mean. The situation is as 

shown in Figure 5.14 with the interval being between a negative 
and a positive number. In that case 

. 

Figure 5.14: Case 4: An interval containing the mean. 
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Example 5.7 : What is the probability that  is between -1.37 and 
1.68? 

Solution : 

, see Figure 5.15. 

Figure 5.15: The situation for Example 5.7. 

▢ 
Cases 5 & 6 : Excluding tails. Case 5 is excluding the right tail, 

. Case 6 is excluding the left tail, . See 
Figure 5.16. Case 5 is the situation which gives the percentile 
position of  if you multiply the are by 100. More about percentiles 
in Chapter 6. In either case, . 

Figure 5.16: Left: Case 5. Right: Case 6. 
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Case 7 : Two unequal tails. In this case we add the areas of the 
left and right tails, see FIgure 5.17. The special case where the tails 
have equal areas (i.e. when  in the notation we have been 
using) is the case we will encounter for two-tail hypothesis testing. 

. 

Figure 5.17: Case 7: Two unequal tails. 

Example 5.8 : Find the areas of the tails shown in Figure 5.18. 
Solution : 

. 

146  |  5.3 Normal Distribution



Figure 5.18: The situation for Example 5.8. 

▢ 
Using the Standard Normal Distribution Table backwards 
Up until now we’ve used the Standard Normal Distribution Table 

directly. For a given , we look up the area . Now we look 
at how to use it backwards: We have a number that represents the 
area between 0 and , what is ? Let’s illustrate this process with 
an example. 

Example 5.9 : We are given an area  as shown in 
Figure 5.19. What is {z}? 

Solution : Look in the Standard Normal Distribution Table for the 
closest value to the given . In this case 0.2123 corresponds exactly 
to . 
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Figure 5.19: The situation for Example 5.9. 

▢ 
Example 5.9 was artificial in that the given area appeared exactly 

in the Standard Normal Distribution Table. Usually it doesn’t. In 
that case pick the nearest area in the table to the given number and 
use the  associated with the nearest area. This, of course, is an 
approximation. For those who know how, linear interpolation can be 
used to get a better approximation for . 

The -transformation preserves areas 
In a given situation of sampling a normal population, the mean 

and standard deviation of the population are not necessarily 0 and 
1. We have just learned how to compute areas under a standard 
normal curve. How do we compute areas under an arbitrary normal 
curve? We use the -transformation. If we denote the original 
normal distribution by  and the -transformed distribution 
by  then areas under  will be transformed to areas 
under  that are the same. The -transformation preserves 
areas. So we can compute areas, or probabilities under  using 
the Standard Normal Distribution Table and instantly have the 
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probabilities we need for the original . Let’s follow an 
example. 

Example 5.10 : Suppose we know that the amount of garbage 
produced by households follows a normal distribution with a mean 
of  pounds/month and a standard deviation of 
pounds/month. What is the probability of selecting a household 
that produces between 27 and 31 pounds of trash/month? 

Solution : First convert  and  to their -scores: 

    

    

Then, referring to Figure 5.20, we see that the probability is 

. 

→ z-transform → 

5.3 Normal Distribution  |  149



Figure 5.20 : The situation of Example 5.10. Left is the given 
population, . On the right is the -transformed version of the 
population . The value 27 is -transformed to -0.5 and 31 is 

-transformed to 1.5. 
▢ 

In Example 5.10 we used the Standard Normal Distribution Table 
directly. You will also need to know how to solve problems in which 
you use this table backwards. The next example shows how that is 
done. For this kind of problem you will find the  first and then you 
will need to find  using the inverse -transformation : 

    
which is derived by solving the -transformation,  for 
. 
Example 5.11 : In this example we work from given . To be 

a police person you need to be in the top 10\% on a test that 
has results that follow a normal distribution with an average of 

 and . 
What score do you need to pass? 
Solution : First, find the  such that 

. That  is a right tail area (Case 2), so we need , 
look at Figure 5.21 to see that. Then, going to the Standard Normal 
Distribution Table, look for 0.4 in the middle of the table then read 
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off  backwards. The closest area is 0.3997 which corresponds to 
. Using the inverse -transformation, convert that  to 

an : 
to get 

    
or, rounding, use . There are frequently consequences 

to our calculations and in this case we want to make sure that we 
have a score that guarantees a pass. So we round the raw calculation 
up to ensure that. 

← inverse z-transform ← 
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Figure 5.21 : The situation of Example 5.11 
▢ 

152  |  5.3 Normal Distribution



6. PERCENTILES AND 
QUARTILES 

The concept of percentile1 applies to either a data set (sample, 
as represented by a histogram — a discrete distribution) or to a 
continuous distribution (which represents a population) as shown in 
Figure 6.1. 

Figure 6.1: The concept of percentile applies to either a data set or to a 
continuous distribution. 

The percentile position of the data point , denoted here by 
, is the percentage of the area under the curve up to the 

1. This percentile stuff is all about cumulative frequency or 
(thinking about probabilities) cumulative relative 
frequencies. The corresponding probability functions 
are called Cumulative Distribution Functions or CDFs. 
You will encounter CDFs in SPSS; they are mentioned 
later in this chapter. 
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point . Notation warning : Do not confuse percentile and 
probability, we use  to denote both!! (They are related though.) 

To determine the percentile position for  from a normal 
distribution of values, convert  to  via the -transformation, 
determine the area under the standard normal curve up to  and 
multiply by 100. We have, therefore, already seen how to compute 

 given  or how to compute  for a given percentile . 
See Case 5 in Section 5.3 and remember how to use the Standard 
Normal Distribution Table forward and backwards. 
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6.1 Discrete Data Percentiles 
and Quartiles 

Before we get into how to calculate percentile in a data set, note 
that we can see percentiles directly on a cumulative frequency plot, 
see Figure 6.2. 

Figure 6.2 : With a cumulative frequency plot, we can read percentiles off the 
 axis. If you have a newborn baby and take it to the doctor for their first 

check up, they will measure the baby’s head circumference and tell you the 
baby’s head size percentile by looking at such a chart. The doctor’s chart will 
be based on an accumulation of a very large number of essentially population 
data. Cumulative frequency graphs, or more exactly cumulative probability 
graphs, can be made for continuous distributions like the normal distribution. 
The resulting function is the Cumulative Distribution Function, or CDF, and 
is, for example, P(z) represents the z-distribution then CDF 

. We will see this CDF in SPSS. 

Computing percentile positions of discrete data. Let  be the 
ordered position of a data set of  data points, then we define the 
percentile position of  to be 
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(6.1)   

This formula has the property that  and 
. It is what we will use as a percentile 

formula but it is not the only one. Look at Figure 6.1. The way 
the histogram there is shaded the formula would be 

 which would have the property that 

 and . There are other, not 
necessarily wrong, ways to define the percentile position of discrete 
data but we will use Equation 6.1. 

If you want to find the position, , of the data point corresponding 
to a given percentile  then compute 

(6.2)   

Equation (6.2) is derived by solving Equation (6.1) for . Note that 
Equation (6.2) gives the position of the data point , not its value. 
To clarify that, let’s look at an example. 

Example 6.1 : Consider the dataset given below. Data would 
originally be given as the numbers in the first line. So the first step 
in answering any question about percentiles is to order the data, the 
same as what you need to to to determine the median of a dataset. 
Once the data are ordered, then you may assign a position number 
to each data point as shown in the third line. 

original 
data 18 15 12 6 8 2 3 5 20 10 

ordered 
data 2 3 5 6 8 10 12 15 18 20 

1 2 3 4 5 6 7 8 9 10 
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Q : What is the percentile rank of ? 
A :  so 

percentile. 
Q : What is the value corresponding to the  percentile, ? 

A : 

The closest  is 3 and . We can write . 
▢ 

Decile : 
 The decile of data value  in the ordered position 

is defined as 

    

We will not make much use of decile except to see that quartile is 
defined in the same way. 

Quartile : 
 The quartile of data value  in the ordered position 1. 

(6.3)  

Notation : (This notation also applies to  and .) We write : 
 &=&  quartile 

 & = &  quartile 

 & = &  quartile 
 & = &  quartile 
 & = &  quartile 

Quartiles are useful because we do not have to compute 
percentile first and then divide by 25 as given by Equation (6.3). 
Instead, we can use the following handy tricks after ordering our 
data: 
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Example 6.2 : Example with an even number of data points. With 
the data in order, first find the median, then the medians of the two 
halves of the dataset : 

    

▢ 
Example 6.3 : Example with an even number of data points. With 

the data in order, first find the median, then the medians of the two 
halves of the dataset : 

    

▢ 
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6.2 Finding Outliers Using 
Quartiles 

We can use quartiles to identify outliers or data points that are 
wildly discrepant with the rest of the data. For this application, we 
need another definition of data dispersion : 

    
With the IQR any data value that satisfies: 
(a) less than 

or 
(b) greater than 

…is considered an outlier. This is one of many ways one can define 
an outlier. As we will discuss below, it is a robust way of identifying 
outliers. 

Example 6.4 : Consider the data of Example 6.2. We found 
    
so, 
    
Following our rules for finding outliers, we compute: 
(a) lower acceptable value limit 

(b) upper acceptable value limit 

and 50 > 36.5 so 50 is considered an outlier. 
▢ 
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6.3 Box Plots 

A box plot is a plot that shows ,  and MD (= ) along 
with H and L (=  and ) as shown in Figure 6.3. It especially 
emphasizes the IQR. 

 

Figure 6.3: The features of a box plot, also known as a box-and-whiskers plot. 
When one of the whiskers is more than 1.5 times the length of the box (the IQR) 
then there are outliers by our definition in Section 6.2. The data line shown 
below the box plot is a construction line and not part of the box plot. 

Example 6.5 : Construct a box plot for the data shown in Figure 6.4. 
Again, someone has done the first, tedious, step of ordering the data 
for us. 

 

Figure 6.4: Construction of a box plot from the given data. 
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▢ 
Box plots can also be drawn vertically. SPSS draws box plots 

vertically; this is especially useful for comparing datasets. 
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6.4 Robust Statistics 

A robust statistic or resistant statistic is one that is less affected by 
outliers than a non-robust or non-resistant statistic. If you look at 
the numbers in Example 6.2 you can see that the value of the MD 
(and IQR) is completely unaffected by the value of the outlier data 
point 50. The mean and the standard deviation will, however, be 
greatly affected by the value of the outlier. So while some people 
may identify outliers as those being (say) 3  from the mean, we see 
that that is a non-robust way of identifying outliers. In summary: 

Measures of central tendency and 
dispersion 

Robust Non-robust 

MD 
IQR 

It would seem that inferential statistics based on robust statistics 
would be better than statistics based on non-robust values. Maybe. 
But, traditionally, statistical analysis like the -tests, ANOVA and 
regression, are based on the non-robust statistics of means and 
standard deviations (or variance). People tend to use robust 
statistics in “Exploratory Data Analysis” (EDA). With EDA one is not 
concerned so much with testing hypothesis as in trying to get an 
understanding of general trends in the data. The techniques, and 
statistics, the fall under the two categories are: 
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Traditional Exploratory Data 
Analysis (EDA) 

Frequency Tables 
Histogram 
Mean, 

Standard Deviation, 

Stem and Leaf Plot 
Box Plot 

Median, MD 
Interquartile Range, 

IQR 

You will find an EDA menu under Analyze → Descriptives in SPSS. 
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SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

6.5 SPSS Lesson 4: Percentiles 

To follow along, load in the file “AgeSmoker.sav” from the Data Sets. 
We will pick on the variable Age. We will compute the percentile 
rank of each value in the Age dataset two ways. One way, we will 
treat the data as a discrete data set and will compute the percentile 
position following Equation 6.1. The other way, we will treat the data 
as if they came from a normal population. 

First, treat the data as a stand alone discrete data set. First we need 
to rank the data; the ranks are the values  in Equation 6.1. Use 
Transform  Rank Cases : 
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This produces the ranking variable RAge, visible in the Data View 
window. 

Now use that ranking variable in Equation 6.1 by pulling up 
Transform  Compute Variable : 

SPSS screenshot © International Business Machines Corporation. 

The result, in the Data View window, looks like : 
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SPSS screenshot © International Business Machines Corporation. 

We can sort the data on RAge using Data  Sort Cases : 

SPSS screenshot © International Business Machines Corporation. 

Note how the smallest value has percentile rank 0. If you scroll to 
the end of the list you will see that the largest value has percentile 
rank 100. 
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CDF stands for Cumulative Distribution Function. It is literally the 
cumulative area under a probability distribution function, in this 
case the normal distribution. So multiplying it by 100 give the 
percentile rank. The output, in the Data View window looks like : 
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SPSS screenshot © International Business Machines Corporation. 

Note how the percentile ranks of gparank are different from, but 
close to, the percentile ranks of perrank computed using the data’s 
own distribution. This indicates that the data themselves follow an 
approximately normal distribution. 
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7. THE CENTRAL LIMIT 
THEOREM 

Before we can learn about confidence intervals in Chapter 8 and 
hypothesis testing in the Chapter 9, we need a couple of results that 
form the foundation of the usefulness of the normal distribution. 
We have mentioned that the normal distribution can be derived as 
a limit of binomial distributions. This fact can be used in reverse 
and we can use the normal distribution to approximate the binomial 
distribution. This approximation will be useful for inferences 
(confidence intervals and hypothesis testing) on proportions. The 
second result is the very important central limit theorem where the 
normal distribution pops out as the answer to the characterization 
of random sample means. The central limit theorem gives us the 
sampling theory for all statistical inference procedures involving 
means. 
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7.1 Using the Normal 
Distribution to Approximate 
the Binomial Distribution 

Recall the definitions:  = probability of success,  = 
probability of failure and  = sample size. When  and 

 then the normal distribution is very close, numerically, to 
the binomial distribution. 

Using the histogram way of drawing the binomial distribution, a 
good fit looks like that shown in Figure 7.1. 

Figure 7.1: A normal distribution with mean  and standard 
deviation  is a good fit to the binomial distribution with the 
same mean and standard deviation as long as  and . 

A couple of things to note about this approximation: 

1.  Although the values of the normal and the binomial 
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distributions match well at  equal to integer values when 
 and , the areas match not as well. A 

“correction for continuity” can be used to better make the 
areas match but we won’t be worrying about such fine details 
in our studies. 

2.  We will use the normal approximation to the binomial make 
inferences on proportions.  In that case , the probability of 
success will represent a proportion in a population. 
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7.2 The Central Limit 
Theorem 

Now we come to the very important central limit theorem. First, let’s 
introduce it intuitively as a process : 

1. Suppose you have a large population (in theory infinite) with 
mean  and standard deviation  (and any old shape). 

2. Suppose you have a large sample, size , of values from that 
population. (In practise we will see that  is large.) 
Take the mean, , of that sample. Put the sample back into 
the population1 

3. Randomly pick another sample of size . Compute the mean 
of the new sample, . Return the sample to the population.. 

4. Repeat step 3 an infinite number of times and build up your 
collection of sample means . 

5. Then2 the distribution of the sample means will be normal will 
have a mean equal to the population mean, , and will have a 
standard deviation of 

1. This is redundant since the population is infinite, but for 
conceptual purposes imagine that you return the items 
to the population. 

2. More precisely, the distribution of sample means 
asymptotically approaches a normal distribution as 

. But 30 is close enough to infinity for most 
practical purposes and the statistical inferential tests 
that we will study will assume that the distribution of 
sample means will be normal. 
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where  is the population’s standard deviation. 
 is known as the standard error of the mean. 

Now let’s visualize this same process using pictures : 

• Take a sample of size  from the population and compute the 
mean  (see Figure 7.2a). 

 

Figure 7.2a 

• Put them back and take  more data points. 
• Do this over and over to get a bunch of values for . Those 

values for  will be distributed as shown in Figure 7.2b. 
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Figure 7.2b 

The central limit theorem is our fundamental sampling theory. It 
tells us the if we know what the mean and standard deviation of 
a population3 are then we can assign the probabilities of getting a 
certain mean  in a randomly selected sample from that population 
via a normal distribution of sample means that has the same mean 
as the population and a standard deviation equal to the standard 
error of the mean. 

To apply this central limit theorem sampling theory we will need 
to compute areas  under the normal distribution of means. In 
order to do that, so we can use the Standard Normal Distribution 
Table, we need to convert the values  to a standard normal 

3. In hypothesis testing we know what the mean of the 
population in the null hypothesis is. 
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 using the -tranformation as usual: . So, for the 

distribution of sample means the appropriate -transformation is : 

    

Example 7.1 : Assume that we know, say from SGI’s database, that 
the mean age of registered cars is  months and that the 
population standard deviation of the cars is  months. We 
make no assumption about the shape of the population distribution. 
Then, what is the answer to the following sampling theory question: 
What is the probability that the mean age is between 90 and 100 
months in a sample of 36 cars? 

Solution : The central limit theorem tells us that sample means 
will be distributed as shown in Figure 7.3. 

Figure 7.3 : Distribution of mean age from samples of 36 cars. 

Convert 90 and 100 to -scores as usual: 
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Then, the required probability using the Standard Normal 
Distribution Table is 

    

▢ 

7.2 The Central Limit Theorem  |  177





8. CONFIDENCE INTERVALS 
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8.1 Confidence Intervals 
Using the z-Distribution 

With confidence intervals we will make our first statistical 
inference. Confidence intervals give us a direct inference about the 
population from a sample. The probability statement is one about 
hypotheses about the mean  of the population based on the mean 

 and standard deviation  of the sample. This is a fine point. 
The frequentist definition of probability gives no way to assign a 
probability to a hypothesis. How do you count hypotheses? The 
central limit theorem makes a statement about the sample means 

 on the basis of a hypothesis about a population, about its mean 
 and standard deviation . If the population is fixed then the 

central limit theorem gives the results of counting sample means, 
frequentist probabilities. If we let  represent a hypothesis about a 
population (i.e. that it is described by  and ) and let  represent 
data (with mean ) then the central limit theorem gives the 
probability . The confidence 
intervals that we’ll look at first give 
. We’ll look at the recipe for computing confidence intervals for 
means first, then return to this discussion about probabilities for 
hypotheses. 

Our goal is to define a symmetric interval about the population 
mean  that will contain all potentially measured values of  with a 
probability1 of . 

Typically  will be 

1. Because of this issue about probabilities of hypotheses, 
many prefer to say "confidence" and not probability. But 
we will learn enough about Bayesian probability to say 
"probability". 
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The assumptions that we need in order to use the -distribution 

to compute confidence intervals for means are : 

1. The population standard deviation, , is known (a somewhat 
artificial assumption since it is usually not known in an 
experimental situation) or 

2. The sample size is greater than (or equal to) 30,  and 
we use , the sample standard deviation in our 
confidence interval formula. 

Definition : Let  where  be the -value, 

from the Standard Normal Distribution Table that corresponds to 
an area, between 0 and  of  as shown in Figure 8.1. 

Figure 8.1 : The -distribution areas of interest associated 
with . 

To get our confidence interval we simply inverse -transform the 
picture of Figure 8.1, taking the mean of 0 to the sample mean  and 
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the standard deviation of 1 to the standard error  as shown 
in Figure 8.2. 

Figure 8.2 : The inverse -transformation of Figure 8.1 gives 
the confidence interval for . 

So here is our recipe from Figure 8.2. The -confidence interval for 
the mean, under one of the two assumptions given above, is : 

    

or using notation that we will use as a standard way of denoting 
symmetric confidence intervals 

(8.1)   
where 

    

The notation  is more convenient for us than  because we 

will use the t Distribution Table in the Appendix to find  very 
quickly. We could equally well write 

    
but we will use Equation (8.1) because it explicitly gives the 

bounds for the confidence interval. 
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Notice how the confidence interval is backwards from the picture 
that the central limit theorem gives, the picture shown in Figure 
8.3. We actually had no business using the inverse -transformation 

 to arrive at Figure 8.2. It reverses the 
roles of  and . We’ll return to this point after we work through 
the mechanics of an example. 

Figure 8.3 : The central limit theorem is about distributions of 
sample means. 

Example 8.2 : What is the 95  confidence interval for student age 
if the population  is 2 years, sample , ? 

Solution : So . First write down the formula 
prescription so you can see with numbers you need: 

   

 
First determine . With the tables in the Appendices, 

there are two ways to do this. The first way is to use the Standard 
Normal Distribution Table noting that we need the  associated 
with a table area of . Using the table backwards 
we find . The second way, the recommended way 
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especially during exams, is to use the t Distribution Table. Simply 
find the column for the 95  confidence level and read the  from 
the last line of the table. We quickly find . 

Either way we now find 

    

so 

    

with 95  confidence. 
▢ 
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8.2 **Bayesian Statistics 

Now that we’ve seen how easy it is to compute confidence intervals, 
let’s give it a proper probabilistic meaning. To extend probability 
from the frequentist definition to the Bayesian definition, we need 
Bayes’ rule. Bayes’ rule is, for events  and  : 

    
Study Figure 8.4 to convince yourself that Bayes’ rule is true. 

Notice that 

    

and 

    

So, equating  from each of those two perspectives, 
we get Bayes’ rule. 

If we let  (hypothesis) and  (data), Bayes’ rule 
gives us a way to define the probability of hypothesis through 

(8.2)   

The quantity  is known as the prior 
probability of the data relative to the hypothesis and is something 
that can be computed in theory if probabilities are assigned in 
a reasonable manner. The specification of prior probabilities is a 
contentious issue with the Bayesian approach. Really, it represents 
a prior belief. The quantity  is what sampling theory, 
like the central limit theorem, gives and is known as the likelihood. 
Finally the quantity  is known as the posterior 
probability. Equation (8.2) is an expression about probability 
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distributions as well as individual probabilities ( just allow  and 
to vary). 

Figure 8.4 : Venn diagram illustration of Bayes 
rule.                         

If we assign  for the prior probability then 
. We can switch the roles of  and 

! Of course  is not a probability 
distribution because the area under a function whose value is 
always 1 is infinite. The area under a probability distribution must 
be 1. So  is an improper distribution (as a 
function of either  or ). But note that an improper distribution 
times a proper distribution here gives rise to a proper distribution. 
With this slight of hand, we can give confidence intervals a 
probabilistic interpretation. 
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8.3 The t-Distributions 

As a broad introduction, the -distributions are family of 
distributions that give different approximations to the 
-distribution as shown in Figure 8.5. 

Figure 8.5 : The -distributions are a family of distributions, 
labeled here by their degrees of freedom  as in . 

As the degrees of freedom, , increases,  become closer to , 
. In practice, as reflected in the t Distribution 

Table,  is very very close to . 
The -distributions arise as a corollary to the central limit 

theorem; they give the distribution of sample means when 
knowledge of the population  is replaced by using the sample 
mean . When we encounter the  distribution later, we will give 
a more exact mathematical specification of the -distributions. 

Similar, to the -distribution case, the  confidence interval for 
the mean  for small  samples is given by 

    
where, now 

    

With this new formula for  we have replaced  with  in 
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comparison with the formula we used in Section 8.1: Confidence 
Intervals using the z-distribution and, of course, replaced  with 

. Some books use  like the  of Section 8.1. We 

use  because we’ll look up its value in the t Distribution Table in 
the column for  confidence intervals ( just like we did with ) and 
with the degrees of freedom  specifying the row. The formula for 
the degrees of freedom in this case is : 

    
The  specify a probability  as shown in Figure 8.6. As before, 

the inverse -transform, in the form  from the 
-distribution on the left of Figure 8.6 to the distribution on the 

right of Figure 8.6 leads to our confidence interval formula for small 
means. And as before we should justify using that transform from a 
Bayesian perspective. 

 → inverse 
-transform → 

Figure 8.6 : Derivation of confidence intervals for means of small 
samples. 

Example 8.2 : Given the following data: 
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find the 99% confidence interval for the mean. 
Solution : First count  and then, with your stats calculator 

compute 
    
Using the t Distribution Table with  in the 

99% confidence interval column, find 

    
With these numbers, compute 

   

so 

    

is the 99  confidence interval for . 
▢ 
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8.4 Proportions and 
Confidence Intervals for 
Proportions 

We will now make use of the approximation of the binomial 
distribution by the -distribution given in Section 7.1: Using the 
Normal Distribution to Approximate the Binomial Distribution. As 
usual, the confidence interval will switch the roles of population 
and sample quantities. The recipe will be laid out first, then we will 
connect it to what you know about the binomial distribution. 

First some definitions. Let  be the number of items in a 
population of size  that have a given quality. (e.g. the number 
of females in a population; or the number of people at the U of S 
wearing yellow sweaters). Then the proportion of the population 
having the given quality is 

    

Given a sample from the population of size , the best estimate 
for  is: 

    

where  is the number of items in the sample having the given 
quality. To go along with  we also have 

    
which is is the proportion of items in the sample without the 

given quality. 
To compute an  confidence interval for a proportion  we need 

to compute 
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and it must be true that both  and  (otherwise 
we need to use the binomial distribution directly). 

With , the  confidence interval for a proportion is given by 
    
To derive the proportions confidence interval formula we’ll begin 

with the sampling theory given by the binomial distribution and the 
corresponding -approximation. Then we’ll switch the roles of 
and . Let 

    

be the mean, the expected value, of  that you expect to find in 
a sample of size  randomly selected from the population with a 
proportion  of items of interest. This is true because  is also the 
probability of randomly selecting an item of interest (the probability 
of success) from the population as per what we did in Chapter 4. The 
binomial distribution tells you the probability of getting different 
numbers  of items of interest in your sample given . The binomial 
distribution that describes our situation is shown in Figure 8.7; it has 
a standard deviation of . 
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Figure 8.7 : The binomial distribution relevant to forming a 
sample of size  with  items of interest from a population 
with a proportion  of items of interest. The normal 
distribution with the same  and  is shown. 

Moving to the normal approximation, we have the picture of Figure 
8.8. 

8.4 Proportions and Confidence Intervals for Proportions  |  193



Figure 8.8 : The normal distribution relevant to forming a 
sample of size  with  items of interest from a population 
with a proportion  of items of interest. The boundaries of 
the area  follow from an inverse -transform of the 
-distribution to a normal distribution of mean  and 
standard deviation , . 

Figure 8.8 says : 

    

with a (frequentist) probability of . This is our sampling theory. 
Divide by : 

    

Swapping the roles of the population and sample, we arrive at the 
confidence interval formula : 
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Time for a worked example. 
Example 8.3 : A sample of 500 nursing applications included 60 

men. Find the 90% confidence interval of the true proportion of 
men who applied to the nursing program. 

Solution : From the t Distribution Table, look up 
    
and compute 

    

    

   

Then 

    
    
    
is the confidence interval with 90% confidence. 

▢ 
Sample size need for a poll 
Measuring proportions is what pollsters do. For example in an 

election you might want to know how many people will vote for 
liberals (items of interest) and how many will vote for conservatives 
(items not of interest)1 In a news paper you might see: “The poll 

1. We assume here that there are only two parties. For the 
real life situation of more than two parties we need the 
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says that 72  of the voters will vote liberal. The poll is considered 
accurate to 2 percentage points 19 time out of 20.” This means 
that the 95  confidence interval (19/20 = 0.95) of the proportion 
of liberal voters is  (note how proportions are 
presented as percentages in the newspaper). The error here is 

. Before the pollster starts telephoning people, she 
must know how many people to phone to arrive at that goal error 
of 2 . She needs to know what the sample size  needed is. In 
general, the minimum sample size needed to attain a goal error 
on a confidence interval of  is 

    

Here  and  could come from a previous survey if available. If 
there is no such survey or if you want to be sure of ending up with 
an error equal to or less than a goal E, then use , see 
Figure 8.9. 

multinomial distribution and to approximate it with a 
multivariate normal distribution. That is a topic for 
multivariate statistics but the principles are the same as 
what we cover here. 
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Figure 8.9 : The formula  is a quadratic formula. 

Substitute  to get  or 

. The maximum of  is at 

. 

Example 8.4 : We want to estimate, with 95  confidence, the 
proportion of people who own a home computer. A previous study 
gave an answer of 40 . For a new study we want an error of 2 . 
How many people should we poll? 

Solution : From the question we have : 

    
    
From the t Distribution Table (or the Standard Normal 

Distribution Table if you think about the areas correctly) we find 
    
Therefore 
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Which we round up to a sample size of 2305 to ensure that 
. 

▢ 
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8.5 Chi Squared Distribution 

The  (chi squared) distribution is a consequence of a random 
process based on the normal distribution. It is derived from the 
normal distribution as the result of the following stochastic process 
: 

1. Suppose you have a population that has variance  and is 
normally distributed. 

2. Take a sample of size  from the population and compute 

 using the sample standard deviation  from 
that sample. 

3. Put the sample back into the population. 
4. Take another sample of size  from the population and 

compute  using the sample standard deviation 
 from that sample. 

5. etc. 

6. The distribution of the values of  values will be 

a  distribution with  degrees of freedom. 

Like the -distributions, the  distributions are a family, see Figure 
8.10. 

Figure 8.10 : The  distributions are enumerated by degrees of freedom. 
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The  distribution underlies why  is the best estimate for . It 
mean, or expected value is  so the expected value of 
is . The expected value of  in a random sample of 
size  is not . 

Confidence Intervals on  and 
The  distribution is already normalized in its definition 

through including  in its definition. Therefore no -transforms 
are needed and we can work directly with a table that gives right 
tail areas under the  distribution. That table is the Chi-squared 
Distribution Table, in the Appendix, and it gives values of  for 
given values of area to the right of , see Figure 8.11. 

Figure 8.11 : The Chi-squared Distribution Table gives  associated with 
given right tail areas. 

We’ll need  and  such that the tail areas are equal and 

such that the area between them is , see Figure 8.12. 
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Figure 8.12 : The values  and  define the confidence region . 

Notation : Let’s call the  in the Chi-squared Distribution Table 
 and let  be the table value that corresponds to . In 

other words  is the  value that corresponds to a right 
tail area of . 

So given , the appropriate  and  are the following 

values from the Chi-squared Distribution Table: 

    

    

Note the symmetry of the Chi-squared Distribution Table. If 
 comes from the column 3 columns from the right edge of the 

table then  comes from a column 3 columns from the left edge 
of the table. Only small and large areas appear in the table, there are 
no intermediate values. 

Finally, the confidence interval for  is given by 
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and for  by: 

    

Where the  distribution with  degrees of freedom 
(giving the line to use in the Chi-squared Distribution Table) is 
used. 

Example 8.5 : Find the 90  confidence interval on  and  for 
the following data 

    
Solution : Compute, using your calculator : 
    
    
From the Chi-squared Distribution Table, in the  line, find 

: 

    

and 

    
So 
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Taking square roots: 
   

▢ 
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9. HYPOTHESIS TESTING 

The process of hypothesis testing can be simplified into : 

1. Transform (“reduce”) your given data into a test statistic that 
you can locate on probability distribution given by the 
sampling theory under a null hypothesis ( ) about the 
population. (e.g.   or  test statistic). 

2. See if your test statistic falls into a critical region of the 
distribution or not. The critical, or rejection region as we’ll call 
it, represents an area of low probability that the null 
hypothesis,  is true. If the test statistic falls in the rejection 
region, the we make the decision to reject  as the 
conclusion of the hypothesis test. 

Before we define the critical region under the null hypothesis, we 
need to define what a null hypothesis is.  We’ll define two 
hypotheses, actually, because the null hypothesis needs to 
contrasted to its logical opposite : 

: Null Hypothesis, the hypothesis that nothing is going 
on; no effect; no signal. 

: Alternative Hypothesis, the hypothesis that  is not 
true; there is an effect; there is a signal. 

A good experimental design will be set up so that the effects 
of interest define . (Your “claim” will be .) Why? It’s about 
signal to noise ratios. A test statistic is literally signal/noise, a signal 
to noise ratio. When you do not reject  you are saying that 
there is more noise than signal. When you reject  (essentially 
accepting ) you are saying that there is more signal than noise. 
Usually you are interested in the signal (also known as an “effect”) 
so your claim would be . You perform your experiment to find 
evidence for . If you are interested in noise (can happen, for 
example to test assumptions on which tests are based) then your 
claim would be . The examples that follow here don’t follow 
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these experimentally correct rules for which of  or  should 
be the claim to emphasize the logical nature of the decision making 
process. But test statistics are signal to noise ratios and in real life 
you will be interested in signals. 

To fix ideas about hypothesis testing, we’ll first look at hypotheses 
on the means of populations ( ).  Later we’ll consider hypotheses 
on  and on  (proportions). 

With means there are three combinations of  and  to 
consider : 

Two-Tailed 
Test 

Right-Tailed 
Test 

Left-Tailed 
Test 

 :  :  : 

 :  :  : 

Here  is a given number. Not that the rightness or the leftness 
of the one-tailed test is reflected in .  is generally what 
people are interested in. Then the critical regions, which are on 
distributions as we’ll see, for each case look like : 

1. Two-tailed test: 
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2. Right-tailed test: 

3. Left-tailed test: 
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The critical regions, or rejection regions, appear in the probability 
distributions , which is the probability distribution that 
the sample test statistic, , that would occur if  were true. These 

-distributions are -transforms of the distribution of sample 
means under  given by the central limit theorem. More about 
this when we introduce the formula for the  distribution. For now, 
let’s focus on the decision making process. 

When your statistic ends up in the critical region, you conclude 
that  is false. You reject . The critical region is the rejection 
region. 

In the two tailed test, the critical region, with total area  is the 
opposite to the region  that we have been using for 
confidence intervals. Compare the two-tail critical region sketch 
above to Figure 8.1. 

There are four possible outcomes to a statistical hypothesis test 
given by the so-called1 “confusion matrix” : 

1. So called not because it is confusing but because you are 
never 100  sure which decision is correct. 
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 true  true 

Reject 
(believe ) 

Type I error 
Correct decision 1-

Do not reject 
(believe ) 

Correct decision 1- Type II error 

The probabilities are relative to the realities. The probabilities in the 
columns add to 1. The probability of making a Type I error, , is the 
area in the critical region. The diagram with the critical region on 
it assumes that  is the reality. We will see how to compute 
in Chapter 13. The quantity  is defined as the power of the 
statistical test. 

We can view the confusion matrix from a medical test point of 
view. A medical test is a hypothesis test has the following 
hypotheses pairs : 

 : negative test result, healthy patient 
 : positive test result, sick patient 

Then : 

Healthy Sick 

Positive Result 
(believe sick) Type I error 

Correct decision 1-

Negative Result 
(believe healthy) 

Correct decision 1- Type II error 

In medical tests, the quantity  is known as the test’s 
specificity, the probability of finding true negatives. The quantity 

 is the test’s sensitivity, the probability of finding true 
positives. Generally  and  are functions of some other decision 
parameter. In the hypothesis tests that we consider here,  is the 
decision parameter. 

Back to understanding the meaning of hypothesis testing. As we 
said, a good experimental design will be set up so that  is your 
favourite theory that there is an effect. In that case  represents 
the case that there is no effect : the position of  away from , or 
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 away from 0 (in the case of hypothesis testing of ) is just due to 
noise. If your experiment is then successful in proving your theory, 
i.e. you reject , then  represents the probability that you are 
wrong. The number  actually defines a decision point for rejecting 

. Later we will see how to compute a value, , that is associated 
with the test statistic. This -value is then a more refined value for 
the probability that you are wrong if you reject . From another 
point of view,  would be the probability that your measurement is 
entirely due to noise. 

Let’s do some examples to build our mechanical skills at defining 
critical regions for  distributions. 

Example 9.1 : Critical Areas on -distributions with hypothesis 
testing on the mean, . 

(a) Left-tailed test with . Find the critical value 
. 
First step, draw a picture : 

With the tables we have in the Appendix, there are two 
ways to find  : 

◦ Method (a) : Look up area in the Standard Normal 
Distribution Table equal to 0.40 : Closest  is 1.28 so 
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. 
◦ Method (b) : Use the last line in the t Distribution Table 

for the one tailed test column. Find a  of 1.282 and add a 
minus sign because we have a left tail test. So 

. 

Use Method (b) on tests and exams. It is faster, requires 
less thinking about areas (and so less chance for making 
a mistake) and gives a slightly more accurate result. The 
critical area or critical region or the rejection region is where 

. The critical value that defines the region in 
this case is . 

(b) A two tailed test with . Find the critical value 
. 
Draw a picture : 

◦ Method (a) : Look up area in the Standard Normal 
Distribution Table equal to 0.49. The closest  is 2.33. So, 
because we have a two-tailed test, . 

◦ Method (b): Use the last line in the t Distribution Table, 
for two tailed test, . Find , 

. 
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Again, Method (b) is the recommended approach. 
So the critical areas are those where 

    
and the critical values are  and 

. 
(c) A right tailed test with . Find the critical value 

. 
Draw a picture : 

◦ Method (a) Look up area in the Standard Normal 
Distribution Table equal to 0.495, the Closest  is 2.58. So 

◦ Method (b) Use the last line in the t Distribution Table for 
one tailed test,  and find 
. 

So the critical area is that where  and the 
critical value is . 

▢ 
One final note on setting up the hypotheses. When setting up the 

hypotheses  and , one of the two alternatives will be the 
claim (what the problem says you really want to test). As mentioned 
before, a good experimental design will have  as the claim. But 
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this may not always be possible to arrange (especially in tests of 
assumptions). So many of the exercises in the text and assignments 
will have  as the claim. 

9. Hypothesis Testing  |  213





9.1 Hypothesis Testing 
Problem Solving Steps 

Now that we have some background on setting up hypotheses and 
finding critical regions, we introduce the steps needed for every 
hypothesis testing procedure. Hypothesis testing is based directly 
on sampling theory and the probabilities 

 that the sampling theory gives. Here 
are the steps we will follow : 

1. Hypotheses : Formulate  and . State which is the claim 
2. Critical statistic : Find the critical values and regions. (Use 

tables of , , , etc. values). 
3. Test statistic : Compute the {\em test statistic} from your 

data. It summarizes your data in one number. The -value 
follows from the test statistic. 

4. Decision : If the test statistic falls in the critical region 
(rejection region), reject . (This decision can also be made 
using the -value.) 

5. Interpretation : Summarize results in a sentence and/or 
present a graphic or table. 

The definition of a -value will be covered below. For now you 
should know that a computer program (SPSS) will give you a 
-value but not a critical statistic. So there is no Step 2 if you use 
SPSS. 

A generic test statistic may be defined by : 

   

The numerator represents a signal or an effect. The denominator 
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represents noise. Not all test statistics will have this form (e.g. some 
 test statistics), but all test statistics represent a signal-to-noise 

ratio. Much of the tabular output of SPSS gives the numerator and 
denominator of this generic form with or without the 
corresponding test statistic. 
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9.2 z-Test for a Mean 

This is our first hypothesis test. Use it to test a sample’s mean when 
: 

1. The population  is known. 
2. Or When , in which case use  in the test 

statistic formula. 

The possible hypotheses are as given in the table you saw in the 
previous section (one- and two-tailed versions): 

Two-Tailed 
Test 

Right-Tailed 
Test 

Left-Tailed 
Test 

 :  :  : 

 :  :  : 

In all cases the test statistic is 

(9.1)   

In real life, we will never know what the population  is, so we 
will be in the second situation of having to set  in the test 
statistic formula. When you do that, the test statistic is actually a 
test statistic as we’ll see. So taking it to be a  is an approximation. 
It’s a good approximation but SPSS never makes that approximation. 
SPSS will always do a -test, no matter how large  is. So keep that 
in mind when solving a problem by hand versus using a computer. 

Let’s work through a hypothesis testing example to get the 
procedure down and then we’ll look at the derivation of the test 
statistic of Equation (9.1). 

Example 9.2 : A researcher claims that the average salary of 
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assistant professors is more than $42,000. A sample of 30 assistant 
professors has a mean salary of $43,260. At , test the 
claim that assistant professors earn more than $42,000/year (on 
average). The standard deviation of the population is $5230. 

Solution : 
1. Hypothesis : 

  (claim) 
(This is a right-tailed test.) 

2. Critical Statistic. 

• Method (a) : Find  such that  from the 
Standard Normal Distribution Table: ; or 

• Method (b) : Look up  in the t Distribution Table 
corresponding to one tail  (column), and read the 
last ( ) line: 

Method (b) is the recommended method not only because it 
is faster but also because the procedure for the upcoming 
-test will be the same for the -test. 

3. Test Statistic. 

    

4. Decision. 
Draw a picture so you can see the critical region : 
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So  is in the non-critical region: Do not reject . 
5. Interpretation. 

There is not enough evidence, from a -test at 
, to support the claim that professors earn more 

than $42,000/year on average. 
▢ 

So where does Equation (9.1) come from? It’s an application of 
the central limit theorem! In Example 9.2, , 
,  and  on the null hypothesis of a right-
tailed test. The central limit theorem says that if  is true then 
we can expect the sample means,  to be distributed as shown 
in the top part of Figure 9.1. Setting  means that if the 
actual sample mean,  ends up in the tail of the expected (under 

) distribution of sample means then we consider that either we 
picked an unlucky 5  sample or the null hypothesis, , is not 
true. In taking that second option, rejecting , we are willing to 
live with the 0.05 probability that we made a wrong choice — that 
we made a type I error. 
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Figure 9.1: Derivation of the  test statistic. 

Referring to Figure 9.1 again,  on the lower 
picture defines the critical region of area  (in this case). 
It corresponds to a value  on the upper picture which also 
defines a critical region of area . So comparing  to 

 on the original distribution of sample means, as given by 
the sampling theory of the central limit theorem, is equivalent, after 

-transformation, to comparing  with . That is, 
is the -transform of the data value , exactly as given by Equation 
(9.1). 
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One-tailed tests 
From a frequentist point of view, a one-tailed test is a a bit of 

a cheat. You use a one-tailed test when you know for sure that 
your test value or statistic is greater than (or less than) the null 
hypothesis value. That is, for the case of means here, you know for 
sure that the mean of the population, if it is different from the null 
hypothesis mean, if greater than (or less than) the null hypothesis 
mean. In other words, you need some a priori information (a 
Bayesian concept) before you do the formal hypothesis test. 

In the examples that we will work through in this course, we will 
consider one-tailed tests when they make logical sense and will not 
require formal a priori information to justify the selection of a one-
tailed test. For a one-tail test to make logical sense, the alternate 
hypothesis, , must be true on the face value of the data. That is, if 
we substitute the value of  for  into the statement of  (for the 
test of means) then it should be a true statement. Otherwise, 
is blatantly false and there is no need to do any statistical testing. 
In any statistical test,  must be true at face value and we do 
the test to see if  is statistically true. Another way tho think 
about this is to think of  as a fuzzy number. As a sharp number a 
statement like “ ” may be true, but  is fuzzy because of 
(think  to get the fuzzy number idea). So “ ” may 
not be true when  is considered to be a fuzzy number1 

When we make our decision (step 4) we consider the equality part 
of the  statement in one-tailed tests. This equality is the strict 

 under all circumstances but we use  or  is  statements 
simply because they are the logical opposite of  or  in the 
statements. So people may have an issue with this statement of 

1. Fuzzy numbers can be treated rigorously in a 
mathematical sense. See, e.g. Kaufmann A, Gupta MM, 
Introduction to fuzzy arithmetic: theory and applications, 
Van Nostrand Reinhold Co., 1991. 
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but we will keep it because of the logical completeness of the 
,  pair and the fact that hypothesis testing is about choosing 
between two well-defined alternatives. 

p-Value 
The critical statistic defines an area, a probability,  that is the 

maximum probability that we are willing to live with for making 
a type I error of incorrectly rejecting . The test statistic also 
defines an analogous area, called  or the -value or (by SPSS 
especially) the significance. The -value represents the best guess 
from the data that you will make a type I error if you reject 
. Computer programs compute -values using CDFs. So when you 
use a computer (like SPSS) you don’t need (or usually have) the 
critical statistic and you will make your decision (step 4) using the 
-value associated with the test statistic according to the rule: 

    
    
The method of comparing test and critical statistics is the 

traditional approach, popular before computers because is is less 
work to compute the two statistics than it is to compute . When 
we work problem by hand we will use the traditional approach. 
When we use SPSS we will look at the -value to make our decision. 
To connect the two approaches pedagogically we will estimate the 

-value by hand for a while. 
Example 9.3 : Compute the -value for  of 

Example 9.2. 
Solution : This calculation can happen as soon as you have the test 

statistic in step 3. The first thing to do is to sketch a picture of the 
-value so that you know what you are doing, see Figure 9.2. 
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Figure 9.2 : The -value associated with  in a one-tail test. 

Using the Standard Normal Distribution Table to find the tail area 
associated with , we compute : 

    

That is . Since , 
we do not reject  in our decision step (step 4). 

▢ 
When using the Standard Normal Distribution Table to find 

-values for a given  you compute). 

• For two-tailed tests: . See Figure 
9.3. 

• For one-tailed tests:  (as in Example 
9.3)2. 

2. Of course substitute  in the formula for a left tail test. 
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Don’t try to remember these formula, draw a picture to see what the 
situation is. 

Figure 9.3 : The -value associated with a two-tailed . Since  is 
defined by, ,  is defined by . 

9.2.1 What p-value is significant? 

By culture, psychologists use  to define the decision 
point for when to reject . In that case, if  then it 
means that the data (the test statistic) indicates there is less than a 
5% chance that the result is a statistical fluke; that there is less than 
a 5% chance that the decision is a Type I error. So, in this course, we 
assume that  unless  is otherwise given explicitly for 
pedagogical purposes. The choice of  is actually fairly lax 
and has led to the inability to reproduce psychological experiments 
in many cases (about 5% of course). The standards in other scientific 
disciplines can be different. In particle physics experiments, for 
example,  is referred to as “evidence” for a discovery 
and they must have  before an actual discovery, 
like the discovery of the Higgs boson, is announced. With z test 
statistics,  represents the area in the tails of the 
distribution 3 standard deviations, or , from the mean. The value 
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 represents tail area , from the mean. So you 
may hear physicists saying that they have “5 sigma” evidence when 
they announce a discovery. 
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9.3 t-Test for Means 

Hypothesis testing for means for sample set sizes in 
where  is used as an estimate for  is the same as for 
except that  and not  is the test statistic1. Specifically, the test 
statistic is 

    

for  from any of the hypotheses listed in the table you saw in the 
previous section (one- and two-tailed versions): 

Two-Tailed 
Test 

Right-Tailed 
Test 

Left-Tailed 
Test 

 :  :  : 

 :  :  : 

The critical statistic is found in thet Distribution Table with the 
degrees of freedom . 

Example 9.4 : A physician claims that joggers, maximal volume 
oxygen uptake is greater than the average of all adults. A sample 
of 15 joggers has a mean of 40.6 ml/kg and a standard deviation of 
6 ml/kg. If the average of all adults is 36.7 ml/kg, is there enough 
evidence to support the claim at ? 

1. Hypothesis. 

  (claim) 

1. Again, SPSS applies the -test, uses  directly, for any 
sample size. 
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2. Critical statistic. 
In thet Distribution Table, find the column for one-tailed 

test at  and the line for degrees of freedom 
. With that find 

    
3. Test statistic. 

 

    

To compute this we need : ,  and 
from the problem statement. From the hypothesis we have 

. So 

    

At this point we can estimate the -value using thet 
Distribution Table, which doesn’t have as much information 
about the -distribution as the Standard Normal 
Distribution Table has about the -distribution, so we can 
only estimate. The procedure is: In the  row, look 
for  values that bracket . They are 2.145 
(with  in the column heading for one-tailed 
tests) and 2.624 (associated with a one-tail ). 

So, 
    

is our estimate2 for . 
4. Decision. 

2. If you know how to interpolate then you can find a single 
value for . 
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Reject . We can also base this decision on our -value 
estimate since : 

    
5. Interpretation. 

There is enough evidence to support the claim that the 
joggers’ maximal volume oxygen uptake is greater than 36.7 
ml/kg using a -test at . 

▢ 
Fine point. When we use  in a  (or  test) as an estimate 

for , we are actually assuming that distribution of sample means 
is normal. The central limit theorem tells us that the distribution 
of sample means is approximately normal so generally we don’t 
worry about this restriction. If the population is normal then the 
distribution of sample means will be exactly normal. Some stats 
texts state that we need to assume that the population is normal for 
a -test to be valid. However, the central limit theorem’s conclusion 
guarantees that the -test is robust to violations of that assumption. 
If the population has a very wild distribution then  may be bad 
estimate for  because the distribution of sample  values will not 
follow the  distribution. The chance if this happening becomes 
smaller the larger the , again by the central limit theorem. 

Origin of the -distribution 
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We can easily define the -distribution via random variables 
associated with the following stochastic processes. Let : 

   

Then the random variable 

    

is a random variable that follows a -distribution with  degrees 
of freedom. 
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9.4 z-Test for Proportions 

The possible hypothesis pairs are : 

Two-tailed Test Right-tailed Test Left-tailed Test 

The steps in hypothesis testing for proportions are the same as 
hypothesis testing for means. Even the generic test statistic formula 
is the similar : 

   

but now the observed and expected values are proportions,  and 
 respectively. The standard error in this case is 

    

Using this information with the generic form, which mimics a 
test statistic, the proportions test statistic is 

    

where  is the number  which appears in the  hypothesis 
statement (see table above). This test statistic is valid only if 

 and  (so that the normal distribution provides 
a good approximation for the relevant binomial distribution). But, 
even though the test statistic can be moulded into the generic form, 
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the proportions test statistic comes from the sampling theory given 
by the binomial distributions and not from any distribution that 
has a standard error {\em per se}. The normal distribution with 

 and  (remember those binomial distribution 
formulae?) -transformed to a -distribution with mean 0 and 
standard deviation 1 gives the test statistic formula. See the 
discussion in Section 8.4. 

Example 9.5 : An attorney claims that more than 25  of all 
lawyers advertise. A sample of 200 lawyers in a certain city showed 
that 63 had used some form of advertising. At , is there 
enough evidence to support the attorney’s claim? 

Solution : 
1. Hypotheses. 

   ,     (claim) 
2. Critical statistic. 

Using thet Distribution Table (last line) for a one tailed 
test at  we find 

3. Test statistic. 

    

So using 

    

    
find 

    

We can also find the  value along with the critical 
statistic. (See the picture for the next step.) Use the Standard 
Normal Distribution Table to find 
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4. Decision. 
Refer to the diagram in Figure 9.4. It shows  in the 

rejection region. So we reject . 

Figure 9.4 : The null hypothesis situation for Example 9.5 

We come, of course, to the same decision by considering the 
-value : 

    
5. Interpretation. 

There is enough evidence, using a -test at , 
to support the claim that more than  of the lawyers use 
some form of advertising. 

▢ 
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9.5 Chi Squared Test for 
Variance or Standard 
Deviation 

The possible hypothesis pairs are, for variance : 

Two-tailed Test Right-tailed Test Left-tailed Test 

For standard deviation we use the square roots of everything : 

Two-tailed Test Right-tailed Test Left-tailed Test 

Note that we did not square root . This is because we are using 
 to stand in for whatever number. That number from  will 

appear in our formulae as either  or  depending on the set 
up. Generally we will work with variance as we work through the 
problem and convert to standard deviation only in the last 
interpretation step if required by the wording of the question. 

The new test statistic is : 

    

where  comes from the sample and  comes from the number 
 in . The degrees of freedom associated with the test statistic 

(for finding the critical statistic) is . There is no 
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mystery where this test statistic came from — this is just how 
as a probability distribution is defined. So, for this test to be valid, 
the population must be normally distributed. The  test here is not 
very robust to violations of that assumption because there is no 
normalizing intermediate central limit theorem here. 

The critical regions on the  distribution will appear as shown 
in Figure 9.5. 

Figure 9.5 : Schematics of the critical regions for  tests of variance. In the 
two-tailed situation the tail areas are equal. 

Let’s work through an example of each hypotheses pair case. In all of 
the examples we assume that the population is normally distributed. 

Example 9.6 : An instructor wishes to see whether the variance 
in scores of the 23 students in her class is less than the variance 
of the population. The variance of the class is 198. is there enough 
evidence to support the claim that the variation of the students is 
less than the population variance  at ? 

Solution : 
1. Hypotheses. 

 

    
2. Critical statistic. 

Refer to Figure 9.6 as we get the critical statistic from the 
Chi-squared Distribution Table. As we see in that figure, 
we must look in the column that corresponds to a right 
tail area of 0.95. The row we need is for 

. With that information we 
find . 
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Figure 9.6 : Schematics of the critical regions for  tests of variance. In the 
two-tailed situation the tail areas are equal. 

3. Test statistic. 
The values we need for the test statistic are 

(from ),  and  from the 
information in the problem. So : 

    

At this point we can also estimate the  value from the 
Chi-squared Distribution Table. The  value is the area 
under the  distribution with  to the left of 
. In the  row of the Chi-squared Distribution Table 
(in general use the closest  if your particular value is not 
in the Chi-squared Distribution Table) hunt down the test 
statistic value of 19.38. You won’t find it but you can bracket 
it with values higher and lower than 19.38. Those numbers 
are 14.042 which has a right tail area of 0.90 (and so a left 
tail area of 0.10) and 30.813 which has a right tail area of 
0.10 (and so a left tail area of 0.90). Recall that the  in 
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the column headings of the Chi-squared Distribution Table 
refers to right tail areas. So, considering the left tail areas 
we know that  since 

 for the relevant  values. 
4. Decision. 

Since  doesn’t fall in the rejection region, do not 
reject . We come to the same conclusion with our 
-value estimate: 

    
5. Interpretation. 

There is not enough evidence, at  with a 
test, to support the claim that the variation in test scores of 
the class is less than 225. 

▢ 
Example 9.7 : A hospital administrator believes that the standard 

deviation of the number of people using out-patient surgery per day 
is greater than eight. A random sample of 15 days is selected. The 
data are shown below. At  is there enough evidence to 
support the administrator’s claim? 
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Solution : 
0. Data reduction. 

We’ll introduce a step 0 when it looks like we should do 
some preliminary calculations with or data. In this case we 
should enter the dataset into our calculations and determine 

. We find . 
1. Hypotheses. 

    

Note conversion to  right away. 
2. Critical statistic. 

In the  line and 
column of the Chi-squared Distribution Table, look up 

3. Test statistic. 

    

To estimate the  value, find the bracketing values of 
 in the  line of the Chi-squared 
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Distribution Table. They are : 26.119 ( ) and 
29.141 ( ), so . 

4. Decision. 

Reject  since  is in the rejection region. Our 
estimate of  leads to the same conclusion : 

    
5. Interpretation. 

There is enough evidence, at  with a  test, 
to support the claim that the standard deviation is greater 
than 8. (Note how we convert to a statement about standard 
deviation after working through the problem using 
variances.) 

▢ 
Example 9.8 : A cigarette manufacturer wishes to test the claim 

that the variance of the nicotine content of its cigarettes is 0.644. 
Nicotine content is measured in milligrams, assume that it is 
normally distributed. A sample of 20 cigarettes has a standard 
deviation of 1.00 kg. At , is there enough evidence to 
reject the manufacturer’s claim? 
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Solution : 
1. Hypotheses. 

    
2. Critical statistic. 

Figure 9.7 : Critical regions for a two tailed test. 

Referring to Figure 9.7, we see that we need two  values, 
one with a tail area of 0.025 and the other with a tail area of 
1 – 0.025 = 0.975. From the Chi-squared Distribution Table 
in the  line find  from 
the  column and  from the 

 column. 
3. Test statistic. 

    

To estimate the  value find the bracketing value of 
 in the  row, They are 27.204 (
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) and 30.144 ( ). The  are right tail 
areas, which is ok, but we need to multiply them by 2 because 
those right tail areas represent  as shown in Figure 9.8. So 

. 

Figure 9.8 : Areas for  associated with the test statistic (29.50 here) in a 
two tail test. 

4. Decision. 
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Do not reject . The estimate  value leads to the same 
conclusion : 

    
5. Interpretation. 

There is not enough evidence, at  with a 
test, to reject the manufacturer’s claim that the variance of 
the nicotine content of the cigarettes is equal to 0.644. 

Notice, with the claim on , that failing to reject 
does not provide any evidence that  is true. We just have 
the weaker conclusion that we couldn’t disprove it. Such is 
the double negative nature of the logic behind hypothesis 
testing that arises where we don’t assign probabilities to 
hypothesis. 

▢ 
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9.6 SPSS Lesson 5: Single 
Sample t-Test 

Open “HeadCircum.sav” from the textbook Data Sets: 

Look at how simple it is! One variable. This is our single sample. Let’s 
do a -test for the hypotheses: 

    
(9.2)   
where we have used  as the potentially inferred 

population value. Selecting the value for  is something that you 
will need to think about when doing single sample -tests. Some 
possibilities are: past values, data range midpoints or chance level 
values. To run the -test in SPSS, pick Analyze  Compare Means 

 One-Sample T Test: 
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The pop up menu is: 

where we have moved our variable into the Test Variable(s) box. If 
more than one variable is in this box then a separate -test will be 
run for each variable. The value  has been entered into 
the Test Value box. That’s how SPSS knows that the hypotheses to 
test is that of the statement (9.2) above. If you open the Options 
menus, you will have a chance to specify the associated confidence 
interval. Running the analysis gives the very simple output: 
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The output is simple but it requires your knowledge of the -test 
to interpret. As you get more experience with using SPSS, or any 
canned statistical software, you will get into the habit of looking for 
the -value. In SPSS it is in the Sig. (for Significance) column. Here 

, which is less than , so we reject the null 
hypothesis and conclude that there is evidence that the population 
mean is not 34.5. Note that this -value is for a two-tailed test. 
What if you wanted to do a one-tailed test? Well, then you have to 
think because SPSS won’t do that for you explicitly. For a one-tailed 
test, , half that of the two-tailed test. Remember that 
the two-tailed  has two tails, each with an area of 0.016 as defined 
by , so getting rid of one of those areas gives the  for the 
one- tailed test. Another way to remember to divide the two-tailed 

 by 2 to get the one-tailed value is to remember that people try to 
go for a one-tailed test when they can because it has more power 
— it is easier to reject the null hypothesis with a one-tailed test 
meaning the -value will be smaller for a one-tailed test. 

Let’s look at the rest of the output. There is a lot of redundant 
information there. You can use that redundant information to check 
to make sure you know what SPSS is doing and I can use that 
redundant information to see if you understand what SPSS is doing 
by reducing the redundancy and asking you to calculate the missing 
pieces. In the first output table, “One-Sample Statistics” is the 
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information that you would get out of your calculator. The first 
three columns are ,  and . The last column is . 

In the second output table “One-Sample Test”, notice that the test 
value of 33.8 is printed to remind you what the hypotheses being 
tested is. Te columns give: , ,  and . Notice that the 
first column,  is the fourth column  divided by the last 
column of the first table, . The last two columns give the 
95% confidence interval 

(9.3)   
Note that zero is not in this confidence interval which is 

consistent with rejecting the null hypothesis. Simply add 
 to Equation (9.3) to get the form we go for when we do 

confidence intervals by hand: 
(9.4)   
You can use the output here to compute a further quantity, known 

as standardized effect size. You’ll get a little practice with doing 
that in the assignments. The standardized effect size, , is a purely 
descriptive statistic (although it can be used in power calculations) 
and is defined by 

(9.5)   

where, by  we mean . Being a descriptive statistic, people 
use the following rule of thumb to describe . If  is approximately 
0.2 then  is considered “small”; if  is approximately 0.5 then  is 
considered “medium”;  is approximately 0.8 then  is considered 
“large”. 

For the presentation of data graphically in reports and papers, an 
error bar plot is frequently used. To get such a plot for the data here, 
select Graphs  Legacy Dialogs  Error Bar: 
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Choose Simple and “Summaries of separate variables”: 

and hit Define. Then set up the menu as follows: 
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noting that we have chosen “Bars Represent” as “Standard error of 
the mean” so that the error bars will be : 

With an error bar plot like this, you can intuitively check the 
meaning of rejecting  from the formal -test. Here the error 
bars do not include the value of 33.80 which is consistent with 
the conclusion that we reject 33.80 as a possible value for the 
population mean. We can see this more directly, and exactly, if we 
choose the value 95 confidence interval in the Bars Represent pull 
down of the plot menu. 

This is a plot of Equation (9.4). The value  is not in the 
95% confidence interval. 
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Finally, selecting Graphs  Legacy Dialogs  Boxplot gives a 
EDA type of data presentation: 
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10. COMPARING TWO 
POPULATION MEANS 

There are two types of two-sample t-tests. (The test we covered in 
Chapter 9 that compared the mean of one sample to a fixed number 

 is known as a one-sample -test.) These tests are: 
Unpaired or independent sample -test: 

The two populations are “independent”. There is no 
relation between the  and  variables (as we’ll call them). 
This is a “between subjects” test, the experimental subjects 
in each of the two populations are different. 

Paired or dependent sample -test: 
There is a natural pairing between the two variables 

and , usually they are measured from the same subject. 
A paired -test is an example of a “repeated measures” or 
“within subject” test. 

We will introduce the independent sample -test with a -test 
approximation first to build ideas. As before, note that SPSS doesn’t 
do these approximate -tests. It does -tests even for large 
samples. 
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10.1 Unpaired z-Test 

We have two populations and two sample sets, one from each 
population : 

Sample Mean Sample std. dev. 

From population 1 

From population 2 

The population means are  and  and just as with the single 
population test, there are 3 possible hypothesis tests : 

Two Tailed Right Tailed Left Tailed 

or or or 

 = 0 

In the second row the hypotheses are written in terms of a 
difference. Irrespective of which way you write the hypotheses, give 
population 1 priority. Write population 1 first. That way you won’t 
mess up your signs or your interpretation. 

The test statistic to use, in all cases1 is 

1. You could specify a non-zero null hypothesis, e.g. 
, in which case you would have 
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(10.1)   

where  = sample set size from population 1 and  = sample set 
size from population 2. This test statistic is based on a distribution 
of sample means as shown in Figure 10.1. 

Figure 10.1 : The distribution of the difference of sample means 
under the null hypothesis . A one-tail example is 
shown here. The test statistic of Equation 10.1 follows from a 
-transformation of this picture. 

Example 10.1 : A researcher hypothesizes that the average number 
of sports colleges offer for males is greater than the average number 
of sports offered for females. Samples of the number of sports 
offered to each sex by randomly selected colleges is given here : 

. We won't consider that case in this 

course. 
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Males (pop. 1) Females (pop. 2) 

At  is there enough evidence to support the claim? 
Solution : 
1. Hypotheses. 

    
Note that  ( ) so  is 

true on the face of it. If  is not true on the face of it then 
 is just plain false without the need for any statistical test. 

With the hypotheses direction set correctly, the question 
becomes: Is  significantly greater than ? The term 
“statistically significant” corresponds to “reject “. 

2. Critical statistic. 
From the t Distribution Table, one-tailed test at 

 we find 
    

Note that  is positive because this is a right-tailed 
test. For left tailed tests make  negative. For two-tailed 
tests you have . 

3. Test statistic. 
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Using the Standard Normal Distribution Table, we can 
find the -value. Since , 

. 
4. Decision. 

Do not reject  since  is not in the rejection region. 
The -value reflects this : 

    
5. Interpretation. 

There is not enough evidence, at  under a 
-test, to support the claim that colleges offer more sports for 
males than females. 

▢ 
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10.2 Confidence Interval for 
Difference of Means (Large 
Samples) 

Swapping the roles of sample and population in the sampling theory, 
we have the confidence interval corresponding to the hypothesis 
test of Section 10.1 

    
where 

    

Example 10.2 : Find the 95  confidence interval for the 
difference between the means for the data of Example 10.1. 

Solution : First, recall our data : 
,  ,  
.  ,  

From the t Distribution Table, look up the  for the 95
confidence interval: . Then compute: 

    
and 

    

10.2 Confidence Interval for
Difference of Means (Large



so 

    
or 

    
with 95  confidence. Notice that it is also correct to write 

 with 95  confidence. 
▢ 

This is a good point to make an important observation. A two-
tailed hypothesis test at a given  is complementary to a confidence 
interval of  in the sense that if 0 is in the confidence 
interval then the complementary hypothesis test will not reject 
. 

Let’s illustrate this principle with a one-sample -test under 
. (We need  for this principle to work.) Look at 

the two possible outcomes : 
Case 1 : 0 in the confidence interval, fail to reject . In the 

hypothesis test you would find : 
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In the confidence interval calculation you would find: 

Putting the two pictures together gives: 

See,  is in the confidence interval if ¯  is not in the rejection 
region. The red distribution that defines the confidence interval 
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is just the blue (identical) distribution slid over from  to . The 
distance  is the same because . 

Case 2 : 0 not in the confidence interval, reject . In this case 
the combined picture looks like: 

Before we can consider the independent sample -test, we need 
a tool for checking what the variances of the populations are. The 
formula for the  test statistic will depend on whether the two 
variances are the same or not. So let’s take a look at comparing 
population variances. 
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10.3 Difference between Two 
Variances - the F 
Distributions 

Here we have to assume that the two populations (as opposed to 
sample mean distributions) have a distribution that is almost normal 
as shown in Figure 10.2. 

Figure 10.2: Two normal populations lead to two  distributions 
that represent distributions of sample variances. The  distribution 

results when you build up a distribution of the ratio of the two 
sample values. 

The ratio  follows an -distribution if . That 
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distribution has two degrees of freedom: one for the numerator 
(d.f.N. or ) and one for the denominator (d.f.D. or ). So we 
denote the distribution more specifically as . For the case 
of Figure 10.2,  and . The  ratio, 
in general is the result of the following stochastic process. Let 
be random variable produced by a stochastic process with a 
distribution and let  be random variable produced by a 
stochastic process with a  distribution. Then the random 
variable  will, by definition, have a 
distribution. 

The exact shape of the  distribution depends on the choice 
of  and , But it roughly looks like a  distribution as shown in 
Figure 10.3. 

 

Figure 10.3: A generic  distribution. 

 and  are related : 

    
so the  statistic can be viewed as a special case of the  statistic. 
For comparing variances, we are interested in the follow 

hypotheses pairs : 
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Right-tailed Left-tailed Two-tailed 

We’ll always compare variances ( ) and not standard deviations (
) to keep life simple. 

The test statistic is 

    

where (for finding the critical statistic),  and 
. 

Note that  when , a fact you can use to get 
a feel for the meaning of this test statistic. 

Values for the various  critical values are given in the F 
Distribution Table in the Appendix. We will denote a critical value 
of  with the notation : 

    
Where: 

 = Type I error rate 
 = d.f.N. 
 = d.f.D. 

The F Distribution Table gives critical values for small right tail 
areas only. This means that they are useless for a left-tailed test. But 
that does not mean we cannot do a left-tail test. A left-tail test is 
easily converted into a right tail test by switching the assignments 
of populations 1 and 2. To get the assignments correct in the first 
place then, always define populations 1 and 2 so that . 
Assign population 1 so that it has the largest sample variance. Do this 
even for a two-tail test because we will have no idea what  on 
the left side of the distribution is. 

Example 10.3 : Given the following data for smokers and non-
smokers (maybe its about some sort of disease occurrence, who 
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cares, let’s focus on dealing with the numbers), test if the population 
variances are equal or not at . 

Smokers Nonsmokers 

Note that  so we’re good to go. 
Solution : 
1. Hypothesis. 

    

2. Critical statistic. 
Use the F Distribution Table; it is a bunch of tables labeled by “

” that we will designate at , the table values that signify right tail 
areas. Since this is a two-tail test, we need . Next 
we need the degrees of freedom: 

    
    
So the critical statistic is 
   

3. Test statistic. 

    

    

With this test statistic, we can estimate the -value using the F 
Distribution Table. To find , look up all the numbers with d.f.N = 
25 and d.f.N = 17 (24  17 are the closest in the tables so use those) in 
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all the the F Distribution Table and form your own table. For each 
column in your table record  and the  value corresponding 
to the degrees of freedom of interest. Again,  corresponds to 

 for a two-tailed test. So make a row above the  row with 
. (For a one-tailed test, we would put .) 

0.20      0.10      0.05      0.02      0.01 
0.10       0.05     0.025    0.01      0.005 

1.84       2.19      2.56       3.08      3.51         3.6 is over here 
somewhere so 

Notice how we put an upper limit on  because  was larger 
than all the  values in our little table. 

Let’s take a graphical look at why we use  in the little 
table and  for finding  for two tailed tests : 

 

But in a two-tailed test we want  split on both sides: 
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4. Decision. 

Reject . The -value estimate supports this : 

    
5. Interpretation. 
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There is enough evidence to conclude, at  with an 
-test, that the variance of the smoker population is different from 
the non-smoker population. 

▢ 
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10.4 Unpaired or Independent 
Sample t-Test 

In comparing the variances of two populations we have one of two 
situations : 

1. Homoscedasticity : 
2. Heteroscedasticity : 

These terms also apply when there are more than 2 populations. 
They either all have the same variance, or not. This affects how we 
do an independent sample -test because we have two cases : 

1. Variances of the two populations assumed unequal. 
. 

Then the test statistic is : 

    

This is the same formula as we used for the -test. To find the 
critical statistic we will use, when solving problems by hand, 
degrees of freedom 

(10.2)   
This choice is a conservative approach (harder to reject ). 

SPSS uses a more accurate 
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(10.3)   

You will not need to use Equation (10.3), only Equation (10.2). 
Equation (10.3) gives fractional degrees of freedom. The  test 
statistic for this case and the degrees of freedom in Equation (10.3) 
is know as the Satterwaite approximation. The -distributions are 
strictly only applicable if . The Satterwaite approximation 
is an adjustment to make the -distributions fit this  case. 

2. Variances of the two populations assumed equal. 
. 

In this case the test statistic is: 

    

This test statistic formula can be made more intuitive by defining 

(10.4)   

as the pooled estimate of the variance.  is the data estimate for 
the common population .  is the weighted mean of the sample 

variances  and . Recall the generic weighted mean formula, 
Equation (3.2). The weights are  and 
; their sum is 

. In other 
words 
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and we can write the test statistic as 

(10.5)   

See that  is clearly a standard error of the mean. 

10.4.1 General form of the t test statistic 

All  statistics have the form : 

    

Remember that! Memorizing complicated formulae is useless, but 
you should remember the basic form of a  test statistic. 

10.4.2 Two step procedure for the 
independent samples t test 

We will use the  test to decide whether to use case 1 or 2. SPSS 
uses a test called “Levine’s test” instead of the  test we developed 
to test .  Levine’s test also produces an  test 
statistic. It is a different  than our  but you interpret it in the 
same way. If the -value of the  is high (larger than ) then 
assume , if the -value is low (smaller than ) then 
assume . 
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In real life, homoscedasticity is almost always assumed because the 
-test is robust to violations of homoscedasticity until one sample 

set contains twice as many, or more, data points as the other. 

Example 10.4: Case 1 example. 
Given the following data summary : 

(Note that . If that wasn’t true, we 
could reverse the definitions of populations 1 and 2 so that 

.) Is  significantly different from ? That is, is 
different from ? Test at . 

Solution : 
So the question is to decide between 
    
a two-tailed test. But before we can test the question, we have to 

decide which  test statistic to use: case 1 or 2. So we need to do 
two hypotheses tests in a row. The first one to decide which 
statistic to use, the second one to test the hypotheses of interest 
given above. 

Test 1 : See if variances can be assumed equal or not. 
1. Hypothesis. 

    
(Always use a two-tailed hypothesis when using the  test to 

decide between case 1 and 2 for the  test statistic.) 
2. Critical statistic. 
   

(from the F Distribution Table) 
(Here we used  given for the -test question. But that is not 

necessary. You can use  in general; the consequence of 
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a type I error here is small because the -test is robust to violations 
of the assumption of homoscedasticity.) 

3. Test statistic. 

    

4. Decision. 
 (  — drawing a picture would be 

a safe thing to do here as usual) so reject . 
5. Interpretation. 
Assume the variances are unequal, , and use the  test 

statistic of case 1. 
Test 2 : The question of interest. 
1. Hypothesis. 
    
2. Critical statistic. 
From the t Distribution Table, with 

, and a two-tailed test with  we find 
    
3. Test Statistic. 

    

The -value may be estimated from the t Distribution Table 
using the procedure given in Chapter 9: from the t Distribution 
Table,  line, find the values that bracket 0.57. There are none, 
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the smallest value is 0.711 corresponding to . So all we 
can say is . 

4. Decision. 

 is not in the rejection region so do not reject 
. The estimate for the -value confirms this decision. 

5. Interpretation. 
There is not enough evidence, at  with the 

independent sample -test, to conclude that the means of the 
populations are different. 

▢ 
Example 10.5 (Case 2 example) : 
The following data seem to show that private nurses earn more 

than government nurses : 

Private Nurses Salary Government Nurses 
Salary 
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Testing at , do private nurses earn more than 
government nurses? 

Solution : 
First confirm, or change, the population definitions so that 

. This is already true so we are good to go. 
Test 1 : See if variances can be assumed equal or not. This is a test 

of  vs. . After the test we find that 
we believe that  at . So we will use the case 2, 
equal variances, -test formula for test 2, the test of interest. 

Test 2 : The question of interest. 
1. Hypothesis. 
    
    
(Note how  reflects the face value of the data, that private 

nurses appear to earn more than government nurses in the 
population — it is true in the samples.) 

2. Critical statistic. 
Use the t Distribution Table, one-tailed test, 

(column) and  to 
find 

    
3. Test statistic. 
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To estimate the -value, look at the  line in the t 
Distribution Table to see if there are a pair of numbers that bracket 

. They are all smaller than 5.47 so  is less than the 
 associated with the largest number 2.921 whose  is 0.005 (one-

tailed, remember). So . 
4. Decision. 
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Reject  since  is in the rejection region and 
. 

    
5. Interpretation. 
From a -test at , there is enough evidence to 

conclude that private nurses earn more than government nurses. 
▢ 
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10.5 Confidence Intervals for 
the Difference of Two Means 

The form of the confidence interval is 

    
but, as with hypothesis testing, we have two cases to choose from 

to get the formula for  : 
Case 1 : Variances of the 2 populations unequal} 

    

where the degrees of freedom to use when looking up  in the t 
Distribution Table is 

    
Case 2 : Variances of the 2 populations equal 

    

where we use 
    
when looking up . 
To select the appropriate formula for  we need to do a 

preliminary hypothesis test on . An odd 
combination of hypothesis test followed by confidence interval 
calculation. 

Insight! By now you should have noticed that the formulae for 
 are just  times standard error of the mean. This whole 

-transformation thing should be becoming somewhat transparent. 
Example 10.6 : Find the 95  confidence interval for 

for the data of Example 10.4 : 
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Solution : 
First use -test to see which formula to use.  We did this already 

in Example 10.4 (the data come from that question) and found that 
we believed  with . 

Next, look up  in the t Distribution Table for 95  confidence 
interval for : 

    
Compute 

    

So 

   

be careful of the order! 
▢ 
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10.6 SPSS Lesson 6: 
Independent Sample t-Test 

To follow along, load in the Data Set titled “pHLevel.sav”: 

This is the first time we have an independent variable, Species in 
this case, and it has two values, setosa and versicolor, that label the 
two populations. Notice, especially, that we do not have separate 
columns for each sample. There is only one dependent variable, 
Sepal.Length in this case. As we cover the more advanced statistical 
tests in later chapters (part of PSY 234) the nature and complexity 
of the independent variable will evolve but we will always have just 
one independent variable. 

Running the -test is easy, pick Analyze  Compare Means 
Independent Samples T Test : 
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Select Sepal.Length as the Test Variable (dependent variable) and 
Species as the group variable (independent variable) : 

You need to do some work to let SPSS know that the two levels of 
the “grouping variable” are 1 and 2 (as can be seen in the Variable 
View window). So hit Define Groups… and enter: 
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Hit Continue, then OK (the Options menu will allow you to set the 
confidence level percent) to get: 

The first table shows descriptive statistics for the two groups 
independently. These numbers, excluding standard error numbers 
can be plugged into the  formulae for pencil and paper 
calculations. 

The important table is the second table. First, what hypothesis are 
we testing? It is important to write it out explicitly: 

    
(10.6)   
This, as you recall, is our test of interest. When we did this test 
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by hand, we had to do a preliminary  test the see if we could 
assume homoscedasticity or not : 

    

(10.7)   
That preliminary test is given to us as Levine’s test in the first 

two columns of the second table. Levine’s test is similar to but not 
exactly the same as the  test we used but it also uses  as a 
test statistic. Here we see  with , so 
we reject  and assume that population variances are unequal. 
That means we look at only the second line of the second table 
corresponding to “Equal variances not assumed”. SPSS computes 
and  using both  formulae but it does not decide for you which 
one is correct. You need to decide that yourself on the basis of the 
Levine’s test. 

Again the information is fairly redundant. Looking across the 
second row we have  (note that it is the same as 
the  in the first row – that’s because the sample is large, making 

 a good approximation for both),  (notice the fractional 
 here for the heteroscedastic case — recall Equation (10.3)), 

 (note that it is for a two-tailed hypothesis, if your 
hypothesis is one-tailed then divide  by 2), 

, and the standard error, the denominator 
of the  test statistic formula (  is mean over standard error). The 
value is small, so we reject , the difference of the sample means 
is significant. The last two columns give the 95% confidence interval 
as 

(10.8)   
Notice that zero is not in the confidence interval, consistent with 

rejecting . 
We can also make an error bar plot. Go through Graphs  Legacy 

Dialogs  Errorbar and pick Simple and “Summaries for groups of 
cases” in the next menu and: 

280  |  10.6 SPSS Lesson 6: Independent Sample t-Test



SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

which results in: 

or you could generate a boxplot comparison: 
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Finally, we throw in a couple of effect size (descriptive) measures. 
One is the standardized effect size defined as: 

(10.9)   

where  is the pooled variance as given by Equation (10.4). 
Another measure is the strength of association 

(10.10)   

which measures a kind of “correlation'” between  and . The 
larger , the closer  is to 1. 
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10.8 Paired t-Test 

Here two measurements  and  are taken from every subject. 
We could say that we measure a vector  as the 
independent variable for every subject instead of just a number as 
the independent variable1. This is a within subject design. Within 
subject designs tend to be more statistically powerful than 
independent or between subjects designs that have two completely 
different bunches of people for each variable. The extra power 
comes because we take the difference  for every 
subject. So any overall differences, or variances, in  or  due to 
individuals has been removed from the data. 

The paired -test is a univariate test. The difference between 
univariate and multivariate statistics is the the independent 
variables are numbers for univariate statistics and vectors for 
multivariate statistics. For the paired -test, the vector is converted 
to a number by taking a difference. To convert vector data to 
difference data, make a table : 

1 2 -1 

2 3 -1 

3 5 -2 

1 -2 3 

Note here that the differences in individuals are gone after we take 
differences . 

The data from the  column are what you will work with. 

1. An introduction to vectors will be given in Chapter 17. 
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Compute  and  the mean and sample standard deviation of 
these data. With  the procedure becomes a single sample -test 
of  against zero. Specifically we can test : 

Two-tailed Left-tailed Right-tailed 

The test statistic is 

    

with  (for finding ). 
Example 10.7 : A Physical Education director claims that a vitamin 

will increase a weight lifter’s strength. Eight athletes are selected 
and tested on how much they can bench press. They are each tested 
once before taking the vitamin and again after taking the vitamin for 
two weeks. We want to test the director’s claim at 

The data are : 

Athlete Before(
) 

After(
) 

1 210 219 -9 

2 230 236 -6 

3 182 179 3 

4 205 204 1 

5 262 270 -8 

6 253 250 3 

7 219 222 -3 

8 216 216 0 
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Here we have listed the differences which is actually part of step 
0 of the solution. The  and  columns are what you enter into 
SPSS as your independent variables. With SPSS you never see the 
differences. 

Solution : 
0. Data reduction. 

Compute ,  by entering the 
difference data into your calculator. 

1. Hypothesis. 
    
    
Note that a negative difference, based on  (always 

consistently give population 1 priority if you want to stay out of 
trouble without thinking), indicates an increase in strength. It is 
important to interpret positive or negative differences correctly by 
thinking about what they mean. 

2. Critical statistic. 
Using the t Distribution Table with the column for one-tailed 

tests, , and row , find 
    
(We added the negative sign because this is a left-tailed test.) 
3. Test statistic. 

    

    
To estimate the -value, from the t Distribution Table, 

line, find . 
4. Decision. 
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Do not reject . . 
5. Interpretation. 
Under a paired -test, at , the is not enough evidence 

to conclude that the vitamin increases strength. 
▢ 
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10.9 Confidence Intervals for 
Paired t-Tests 

The usual form applies : 

    
where now 

    

and  can found from the t Distribution Table in the 
 line using the “confidence intervals” heading. 
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10.10 SPSS Lesson 7: Paired 
Sample t-Test 

To follow along, load in the Data Set “Methadone.sav”: 

As set up, the file has two dependent variables. This “within 
subjects” dataset is fundamentally multivariate. When we did the 
paired -test by hand we converted the multivariate data to 
univariate data by taking differences. SPSS will do the differences 
behind the scene and you won’t actually see them. Run the -test by 
picking Analyze  Compare Means  Paired -Samples T-Test: 
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Move the two variables into Pair 1 and hit OK (Options again allows 
you to specify a confidence intervals percentage): 

The output is: 

The first two tables are descriptive statistics. The last table gives the 
stuff we want: , , the confidence 
interval 

(10.11)   
,  and  for the two-tailed 

hypotheses pair 
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(10.12)   
The very low -value (0 in this case) and the absence of 0 in 

the confidence interval guide us to reject , the differences are 
significantly different from zero. 

The standardized effect size and strength of association for the 
paired -test are 

(10.13)   

and 

(10.14)   

respectively. 
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11. COMPARING 
PROPORTIONS 

In this Chapter we will use a  test to compare proportions and 
extend what we do here with the -distribution. 

11. Comparing Proportions  |  291





11.1 z-Test for Comparing 
Proportions 

In Section 9.4 we covered a one-sample test for proportions using 
the  approximation to the binomial distribution. Here we want 
to compare a proportion  in one population with  in another 
population, a two-sample test for proportions, also using the 
approximation to the binomial distribution. Define 

    

where  and  are the number of items of interest in the 
samples from the two populations and  and  are their sample 
sizes. Also define the corresponding , 

,  and . The 
hypotheses we want to test is 

    
which is equivalent to 
    
If , and  are all  then the 

appropriate normal distribution will provide a good approximation 
to the relevant binomial distribution and we can use the following 
test statistic to test the hypotheses 

    

where 
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are the proportions of items of interest and not of interest in the 
two samples combined. 

Example 11.1 : In a nursing home study we are interested in the 
proportions of nursing homes that have vaccination rates of less 
than 80 . The two populations we want to compare are small 
nursing homes and large nursing homes. In a sample of 34 small 
nursing homes, 12 were found to have a vaccination rate of less 
than 80 . In a sample of 24 large nursing homes, 17 were found to 
have a vaccination rate of less than 80 . At  is there a 
difference in the proportions of small and large nursing homes with 
vaccination rates of less than 80 ? 

Solution : 
0. Data reduction. 
First define: population 1 = small nursing homes and population 2 

= large nursing homes. Then compute the proportions: 

   

   

1. Hypotheses. 
    
2. Critical statistic. 
Use Table F, the last ( ) line in the column for a two-tailed test at 

: 
3. Test statistic. 
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4. Decision. 

Reject . 
5. Interpretation. 
There is enough evidence, from a  proportions test at 

 to support the observation that large nursing homes 
have worse vaccination rates than small nursing homes. Make sure 
your parents end up in a small nursing home. (Note that rejection of 
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 in a one-tail test allows us to believe the direction of difference 
given by the sample data.) 

▢ 
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11.2 Confidence Interval for 
the Difference between Two 
Proportions 

The form of the confidence interval is 

    
with 

    

where, as usual you can get  from the last line of the t 
Distribution Table. 

Example 11.2 : Using the data from Example 11.1, find the 95
confidence interval for . 

Solution : The relevant numbers from Example 11.1 are: 
, ,  and , 

, . 
Compute (after finding  from the t Distribution 

Table) 

    

and 

    
So 

11.2 Confidence Interval for the
Difference between Two



    

with 95  confidence. (Note that this corresponds with the 
rejection of  in Example 11.1 since 0 is not in the confidence 
interval.) 

▢ 
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12.1 One-way ANOVA 

A one-way ANOVA (ANalysis Of VAriance) is a generalization of the 
independent samples -test to compare more than 2 groups. 
(Actually an independent samples -test and an ANOVA with two 
groups are the same thing). The hypotheses to be tested, in 
comparing the mean of  groups, with a one-way ANOVA are : 

   

The following assumptions must be met for ANOVA (the version 
we have here) to be valid : 

1. Normally distributed populations (although ANOVA is robust to 
violations of this condition). 

2. Independent samples (between subjects). 
3. Homoscedasticity :  (ANOVA is 

robust to violations of this too, especially for larger sample 
sizes.) 

The concept of ANOVA is simple but we need to learn some 
terminology so we can understand how other people talk about 
ANOVA. Each sample set from each population is referred to as a 
group or each population is called a group. 
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There will be  groups with sample sizes , , ,  with the 

total number of data points being . For an ANOVA, 
the concept of independent variable (IV) and dependent variable 
(DV) become important (the IV in a single sample or a paired -test 
is trivially a number like  or 0). The groups comprise different 
values of one IV. The IV is discrete with  values or levels. 

In raw form, the test statistic for a one-way ANOVA is 

    

where 

    
are the degrees of freedom you use when looking up  in the 

F Distribution Table and where 

    

is the variance between groups, and 
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is the variance within groups. Here ,  and  are the sample 
size, mean and standard deviation for sample  and  is the 
grand mean: 

    

where  is data point  in group . 
So you can see that ANOVA, the analysis of variance, is about 

comparing two variances. The within variance  is the variance 
of all the data lumped together, just as the grand mean  is 
the mean of all the data lumped together. It is the noise. You can 
see that the within variance is the weighted mean (weighted by 

) of the group sample variances — a little algebra shows that 
this is the variance of all the data lumped together. The between 
variance  a variance of the sample means . It is the signal. 
If the sample means were all exactly the same then the between 
variance  would be zero. So the higher  the more likely the 
means are different.  is a signal-to-noise ratio. If the means 

were all the same in the population then  would follow a 
distribution and  (whether the population means were the same 

or not) would follow a  distribution. Thus if the population 
means were all the same ( ) then the  test statistic follows a 

 distribution which has an expected value1 (mean) of about 1. 
 must be sufficiently bigger than 1 to reject . 

1. The mean of the  distribution is  if 
. 
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The analysis of the variances can be broken down further, to sums 
of squares, with the following definitions2 : 

    
and 

    
Next we note that  and 

 so 

    

and 

    

where 

   

and 

   

so that 

2. You might have heard of RMS for "root mean square". 
RMS = . RMS is standard deviation. 
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Why are sums of squares so prominent in statistics? (They will 
show up in linear regression too.) Because squares are the essence 
of variance. Look at the formula for the normal distribution, 
Equation 5.1. The exponent is a square. Mean and variance are all 
you need to completely characterize a normal distribution. Means 
are easy to understand, so sums of square focus our attention to 
the variance of normal distributions. If we make an assumption that 
all random noise has a normal distribution (which can be justified 
on general principles) then the sums of squares will tell the whole 
statistical story. Sums of squares also tightly links statistics to linear 
algebra (see Chapter 17) because the Pythagorus Theorem, which 
gives distances in ordinary geometrical spaces, is about sums of 
squares. 

Computer programs, like SPSS, will output an ANOVA table that 
breaks down all the sums of squares and other pieces of the  test 
statistic : 

Source SS MS  (sig) 

Between 
(signal) SS

Within 
(error) SS

Totals SS

Here  is the -value of , reported by SPSS as “sig” for 
significance.  is significant (you can reject ) if . You 
should be able to reconstruct an ANOVA table given only the SS 
values. Notice that the total degrees of freedom of the ANOVA is 

. One degree of freedom is used up in 
computing the grand mean, the rest in computing the variances, 
very similar to how  is the degrees of freedom for sample 
standard deviation . If you think of degrees of freedom as the 
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amount of information in the data then the one-way ANOVA uses up 
all the information in the data. This point will come up again when 
we consider post hoc comparisons. 

Example 12.1 : A state employee wishes to see if there is a 
significant difference in the number of employees at the 
interchanges of three state toll roads. At  is there a 
difference in the average number of employees at each interchange 
between the toll roads? 

The data are : 

Road 1 (group 1) Road 2 (group 2) Road 3 (group 3) 

7 10 1 

14 1 12 

32 1 1 

19 0 9 

10 11 1 

11 1 11 

Solution : 
0. Data reduction. 
Using your calculators, find 

    

    

    
. 

1. Hypothesis. 

2. Critical statistic. 
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Use the F Distribution Table with ; do not divide 
the table  (right tail area) by 2 in this case, there are no left 
and right tail tests in ANOVA. The degrees of freedom needed are 

 (d.f.N.) and 
 (d.f.D.). With that information 

    
3. Test statistic. 
Compute, in turn : 
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Note how we saved  and  for the ANOVA table. And 
finally 

    

4. Decision. 
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Reject . 
5. Interpretation. 
Using one-way ANOVA at  we found that at least one 

of the toll roads has a different average number of employees at 
their interchanges. The ANOVA table is : 

Source SS MS  (sig) 

Between 
(signal) 459.18 2 229.59 5.05 

Within 
(error) 682.5 15 45.5 

Totals 1141.68 17 

We did not compute  but a computer program like SPSS will. 
▢ 
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12.2 Post hoc Comparisons 

If  is rejected in a one-way ANOVA, you will frequently want 
to know where the differences in the means are. For example if 
we tested  and rejected  in a one-way 
ANOVA then we will want to know if  or , etc. 

To see which means are different after doing an ANOVA we could 
just compare all possible combinations of pairs using -tests. But 
such an approach is no good because the assumed type I error rates, 

, associated with the -tests would be wrong. The  rate would 
be higher because in making such multiple comparisons you incur a 
greater chance of making an error. 

So we need to correct our test statistic and/or the corresponding 
 value when we do such multiple comparisons. We will cover two 

such multiple comparison approaches in detail : 

1. Scheffé test 
2. Tukey test 

and we will look at the Bonferroni approach. 
Doing multiple comparisons after an ANOVA is known as post 

hoc testing. It is the traditional approach for comparing several 
means. The opening “omnibus” ANOVA lets you know if there are 
any differences at all. If you fail to reject the ANOVA  then you 
are done. Only when you reject  do you put in the effort of 
comparing means pairwise. This traditional approach, designed to 
minimize the necessary calculations, is not the only way to compare 
multiple means. The other approach is to forget about the ANOVA 
and then use -tests to compare means pairwise on in 
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combinations1 of means until you use up the  degrees of freedom 
in the dataset. Here we will stick with the traditional approach. 

12.2.1 Scheffé test 

The test statistic for the Scheffé test is 

    

Note that  is basically a  quantity (recall that ) but 
with a pooled estimate  of the common population variance 

given by the value of  from the ANOVA. In other words  uses 
information from all of the data to estimate  instead of from just 
groups  and  as a -test would (see Equation 10.5). Note that the 
Scheffé test does not require equal group sizes . 

The critical statistic is a modification of the critical statistic from 
the ANOVA is 

   

where  and  are the ANOVA degrees of freedom. The critical 
statistic is the same for all pairwise comparisons regardless of the 
sample sizes,  and , of the pair of groups being compared. 

Example 12.2 : The ANOVA of Example 12.1 found that at least one 
of the three means was different from the others. Use the Scheffé 

1. Combinations of means may be compared using 
"contrasts". For example  might be compared 
with . Contrasts are not covered in Psy 234. 
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test to find the significant differences between the means. There 
has to be at least one. 

Solution : 
0. Data reduction. 
Collect the necessary information from the omnibus ANOVA. We’ll 

need: 
   

    
1. Hypotheses. 
There are 3 hypotheses pairs to test : 
   

   

2. Critical statistic. 
One value for all three hypothesis tests: 
   

3. Test statistic. 
There are three of them: 

 vs.  : 

    

 vs.  : 

    

 vs.  : 

12.2 Post hoc Comparisons  |  313



    

4. Decision. 

For  vs. , reject . For  vs. , do not reject . For 
 vs. , do not reject . 

5. Interpretation. 
The results of the Scheffé test at  conclude that only 

the mean numbers of interchange employees between toll roads 1 
and 2 are significantly different. 

▢ 
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12.2.2 Tukey Test 

The test statistic for the Tukey test is 

    

where, again,  is from the omnibus ANOVA,  is the mean 
of group  and we must have equal sample sizes for all groups: 

 for all . There is a Tukey test statistic for unequal , and 
it is used by SPSS, but we won’t cover that here. 

The critical statistic, , comes from a table of critical values 
from a new distribution called the  distribution. The critical values 
are tabulated in the Tukey Test Critical Values Table. To use this 
table, you need two numbers going in : 

1.  = number of groups 
2.  = degrees of freedom for 

Reject  when . In this case we don’t have a picture 
of the  distribution handy (although it is basically the absolute 
value of ), so we just use the  rule similar to how we 
use the -value. 

Example 12.3 : Repeat Example 12.2 using the Tukey test instead of 
the Scheffé test. 

Solution : 0. Data Reduction. 
We use the same data from the omnibus ANOVA : 
   

    
1. Hypotheses. 
The 3 hypotheses pairs to test are the same : 
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2. Critical statistic. 
Use the Tukey Test Critical Values Table. Go into the table with 

• Number of groups = . 
• 

. 

and  to find 

    
3. Test statistic. 
Again, there are three of them : 

 vs.  : 

    

 vs. : 

    

 vs. : 

    

4. Decision. 
Reject  when . This only happens for one 

hypothesis pair : For  vs. , reject . For  vs. , do not 
reject . For  vs. , do not reject . 
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5. Interpretation. 
The results of the Tukey test at  conclude that only 

the mean numbers of interchange employees between toll roads 1 
and 2 are significantly different. (Same result as the Scheff  test. 
Usually this happens but when it doesn’t, you need to use some kind 
of non-mathematical judgement.) 

12.2.3 Bonferroni correction 

A more conservative (less power) approach to multiple comparisons 
(post hoc testing) is to use Bonferroni’s method. The fundamental 
idea of the Bonferroni correction is to add the probabilities of 
making individual type I errors to get an overall type I error rate. 
Implementing the idea is simple. Do a bunch of -tests and multiply 
the -value by a correction factor . There are a number of ways 
to choose  (you will have to dig to find out which method SPSS 
uses). The easiest (and most conservative) is to set  equal to the 
number of pairwise comparisons done. So if you have  groups then 

 is given by the binomial coefficient: 

    

Another way is to look at the total degrees of freedom, 

, associated with the pairwise -tests and compare it to the total 
degrees of freedom in the data,  (or one could argue 

), to come up with 

    

Since there is some ambiguity as to what we should use for , we 
will not do Bonferroni post hoc testing by hand. However, be able to 
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recognize Bonferroni results in SPSS, treating the value of  as an 
SPSS blackbox parameter. 
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12.3 SPSS Lesson 8: One-way 
ANOVA 

To follow along, load in the Data Set “BoneStrength.sav”: 

SPSS screenshot © International Business Machines Corporation. 

The data format is exactly the same as used for an independent 
samples -test, except now there are more than two groups in the 
independent variable, named group in this case. The dependent 
variable here is diff and we want to test the hypothesis 

(12.1)  

There are two ways to do this in SPSS. We’ll cover each one. The 
first method is to go through Analyze → Compare means → One-
Way ANOVA : 
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SPSS screenshot © International Business Machines Corporation. 

Move the independent variable into the Factor box and the 
dependent variable into the Dependent List box : 

SPSS screenshot © International Business Machines Corporation. 
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We will ignore the Contrasts menu but the Post Hoc menu is where 
you set things up for Post Hoc analyses : 

SPSS screenshot © International Business Machines Corporation. 

We have checked off Bonferroni, Scheffe and Tukey in the “Equal 
Variances Assumed” box — we will be assuming homoscedasticity 
for all our ANOVA work. Hit Continue then OK to get the output : 

SPSS screenshot © International Business Machines Corporation. 
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SPSS screenshot © International Business Machines Corporation. 

The first table is the ANOVA table. The third column can be obtained 
from the first two since . The fourth column is, of 
course, . The Sig.~column gives 
so we reject . 

The next table, which is not nonsense since the ANOVA tells us 
that at least one of the means is different, gives all the pairwise 
comparisons in a very redundant way. For each test we checked, 
all three pairs of means are compared — twice (hugely sloppy 
programming in my opinion). Looking through the table we see that 

 and  are significantly 
different from zero as indicated by the * or as can be seen by 
looking at the -values. The difference  is 
significantly different from zero. Here all three post hoc methods 
disagreed. If there is ever a disagreement then you should choose 
the most conservative result, the one with the lease amount of 
significant differences. 

We won’t worry too much about the last table. It merges groups 
that are not significantly different from each other into 
“homogeneous subsets”. Here groups 2 and 3 are considered the 
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same and merged into homogeneous subset 1 while group 1 stands 
on its own as homogeneous subset 2. 

The other way of doing a one-way ANOVA is to pick Analyze → 
General Linear Model → Univariate : 

SPSS screenshot © International Business Machines Corporation. 

This brings up : 

SPSS screenshot © International Business Machines Corporation. 
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Move the dependent variable into the Dependent Variable box and 
the independent variable, known as a factor in ANOVA language, 
into the Fixed Factor box. You will be entering two fixed factors 
in here when we get to 2-way ANOVA. The Random Factor is for 
the case where there are multiple populations (factors) and you do 
not get data from all of them, but only from a random sample of 
those populations. We will not cover this approach here but you 
can use it no problem in the future if you have to, it works the 
same way but the SS formulae are different. The Covariate box is 
for a method known as ANCOVA (analysis of covariance). We will not 
cover ANCOVA here, but note that it is a combination of ANOVA and 
linear regression. 

Look at the Model menu and leave the button selected to “Full 
Factorial” (for one-way ANOVA this is the only choice anyway) and 
leave the “Include intercept in model” button as selected too. We’ll 
leave Contrasts as it is too. Open plots and set it up as, by clicking 
group into “Horizontal Axis” and then clicking Add, so we can get a 
profile plot : 

SPSS screenshot © International Business Machines Corporation. 
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Finally, open the Post Hoc menu and set it up the same way as we 
set up the Post Hoc menu above : 

SPSS screenshot © International Business Machines Corporation. 

Hit Continue the OK to get the output : 

SPSS screenshot © International Business Machines Corporation. 

The output is pretty much the same as before (the homogeneous 
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subsets is output also but it is not shown here) but the ANOVA table 
is a little different. In particular there are extra lines in the ANOVA 
table that you need to learn to ignore. The relevant lines are group 
(between), Error (within) and “Corrected Total”. When we run this 
analysis we had the “Include intercept in model” box checked, if 
we unchecked that box then the ANOVA table will not contain an 
Intercept line. 

The output also contains a profile plot where we can clearly see 
that the mean for group 1 is different from the other two groups : 

SPSS screenshot © International Business Machines Corporation. 

We skipped the Save and the Options menu when we set up the test. 
Take a look at the Save menu. You will see a bunch of essentially 
descriptive statistics that we won’t worry about here. In the Options 
menus, though, check off a couple of items, as shown here, and re-
run : 
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SPSS screenshot © International Business Machines Corporation. 

This time you get an additional table for Levine’s test and more 
information in the ANOVA table : 

SPSS screenshot © International Business Machines Corporation. 

Levine’s test has  so we do not reject the null hypothesis 
of homosecdasticity between the three groups. This is just a test 
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SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

of assumptions about the sums of squares formulae using in the 
analysis. The ANOVA table contains a column for the descriptive 
strength of association. Note that it is the same as R squared. 

The profile plot produced by the ANOVA analysis can be miss 
leading if  is large. To see the scatter in the data more clearly, 
we can make profile plots with error bars. Go to Graphs → Legacy 
Dialogs → Error Bar, leave the default settings at Simple and 
“Summaries for groups of cases”. Then set up the menu as follows. 

This produces : 
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SPSS screenshot © International Business Machines Corporation. 

Similarly we can produce a boxplot version : 

SPSS screenshot © International Business Machines Corporation. 
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The ANOVA correctly identified the means of all groups as being 
different. This kind of information can drastically change your 
interpretation of the results (in this case that group C may not be as 
effective as the ANOVA indicates). 
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12.5 Two-way ANOVA 

In all the statistical testing we’ve done so far, and will do in Psy 233/
234, there is only one dependent variable (DV) — we have been/are 
doing univariate statistics. 

And so far, in all the tests we’ve seen there has only been one 
independent variable (IV). For the -tests the IV is group or 
population with only two values1 1 and 2. In one-way ANOVA the 
single IV has  (number of groups) values. Also, so far, the IV has 
been a discrete variable (that will change when we get to 
regression). The graph to keep in mind for the one-way ANOVA is a 
profile graph as shown in Figure 12.1. 

Figure 12.1: The profile plot is a good way to think of one-way ANOVA data 
with the IV on the -axis and the DV on the -axis. A one-way ANOVA tests 
the hypothesis: are all the means  equal to each other? (An actual data 
profile graph can only have sample values , we show a kind of confidence 
interval plot here.) 

With two-way ANOVA you have two IVs. Let’s call the two IVs  and 

1. For the single sample -test the two values of the IV 
were the population of interest and a hypothetical 
population representing  having the mean . 
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. Each IV in two-way ANOVA is called a factor.  and  can each 
have several values (or “levels”). To introduce concepts, let’s stick 
with the case were each of  and  hove only 2 values:  and 
for , and  and  for . This is the  ANOVA case, where 
the 2 tells you haw many levels are in each factor. If, for example, 

 had 4 levels (values) and  had 3 levels then you’d have a 
ANOVA. Let’s stick with the  case for now. 

There are several ways to think of a two-way ANOVA. Let’s start 
with two-dimensional profile plots for a  ANOVA : 

The profile plot can be done in one of two ways. The  axis 
represents the DV in both cases. On the left, the  axis represents 
the IV  and the two values of the other IV, , are represented 
as lines. On the right, the  axis represents the IV  and the two 
values of the other IV, , are represented as lines. Look closely 
at the plots. The dots represent the population values2 with 
being the value of the population labelled by . The 
means in the two plots are exactly the same. Each combination of 
IVs, , defines a treatment group. For a  ANOVA there are 
four treatment groups. 

2. Population values are used for this illustration. When 
you plot profile plots like this you will use sample means. 
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Two way ANOVA supposedly had one of its first applications to 
agriculture. So, to fix ideas, let’s take our two IV’s, also known as two 
factors as : 

    

Then, with two levels for each factor, we can visualize the setup 
as fields where you would grow plants : 

Each field, or treatment group, is also known as a cell. 
Now, lets use the  and  axes to represent the IVs (  and  in 

this case). Then we can use the  axis to represent the DV in a 3D 
plot : 
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This makes sense. A two-way ANOVA has three variables, two IVs 
and on DV, so the data are 3D data and the plot above shows how 
those data appear in 3D space. If you look at the 3D plot from the 
front you see the profile plot with  on the  axis. If you look at the 
3D plot from the (right) side, you see the profile plot with  on the 

 axis. 
We’ve focused on  designs. But the two IVs can have any 

number of discrete values or levels. For example, a  cell 
diagram would look like : 
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And a  design would look like : 
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Now that we understand what kind of data we have, it’s time to 
move onto hypothesis testing. In two-way ANOVA there are three 
hypotheses to test : 

1. Is there a “main effect” of ? 
2. Is there a “main effect” of ? 
3. Is there an interaction of ? 

In all cases,  is that there is no effect or interaction. As we 
will see, each hypothesis is a one-way ANOVA of the two-way data 
suitably collapsed into a one-way design. Let’s begin with the main 
effect of . The hypothesis is equivalent to collapsing the design 
across  : 

and then doing a one-way ANOVA with the one IV equal to . The 
collapse is done by averaging over  which is the same as removing 
the cell boundaries between the  cells and only categorizing the 
data by the  levels. 

The hypothesis for the main effect of  is similarly equivalent to 
collapsing across  : 
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and then doing a one-way ANOVA with the one IV equal to . 
The hypothesis test for the interaction is a one-way ANOVA on 

the “difference of differences”. The idea in interpreting a significant3 

interaction is that the effect of changing IV  depends on the effect 
of changing . Let’s see how the differences arise in a 
ANOVA : 

The interaction tests if there is a significant difference between 
the two differences  and 

. Note that I could have set up the 
differences on the profile plot with  on the  axis. It does not 
matter, the resulting one-way ANOVA turns out to be the same. For 

 or  ANOVAs you get more than two differences to 
compare with a one-way ANOVA. With a generic  ANOVA 
you need to take a mean of differences to compare to each other. 
The interpretation of a generic  can be tricky. 

The interpretation of  interactions is, however, pretty 
straightforward. You need to consider all the possible outcome of 
the  ANOVA with its three hypotheses. Since any hypothesis 

3. Remember that "significant" means "reject ". 
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can be significant or not we have  possible outcomes4. Let’s 
look at generic cases of all the combinations of the outcomes of a 

 ANOVA using ,  and  to denote that  has 
been rejected and significant effects have been found : 

4. Remember the counting rule! 
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The first thing to remember about these diagrams is that they are 
for interpretation — for step 5 of our hypothesis testing procedure. 
You have to do the actual hypothesis test with three 
statistics to decide which case you have. Secondly, note that the 
graphs are generic. In statistics numbers are fuzzy. That is, every 
mean is fuzzy by a standard deviation. So think of the dots on the 
graphs as fuzzy balls and that the lines do not have to go to the 
centers of the fuzzy balls. Now look at the + and x symbols. The + 
symbols show what happens when you collapse the design over 
to see the main effect of ; what is left are the two averages5 for 

 and . The two + means are then compared with a one-way 
ANOVA (essentially a -test since ) to see if there is a 
main effect of . Similarly the x symbols show what happens when 
you collapse the design across  to see the main effect of . The 
means for  and  will be halfway6 along the  and  lines. 
The two x means are then compared with a one-way ANOVA to see 
if there is a main effect of . Finally lets look at the interactions. 
There are four cases in the diagrams that show interactions. In 
two cases the diagrams have crossed lines where the differences 
at either end are the negative of each other (and so are different) 
and in two cases the magnitudes of the differences are different. 
Looking at all the cases we see that there will be an interaction if the 
lines are not statistically parallel. The concept of statistically parallel 
is important here. Your actual data profile plot may not look like it 
has parallel lines but there will be no significant interaction if the 
lines are not statistically distinguishable from being parallel — this 
is the information that the hypothesis test gives you. 

Before we move on, let’s consider post-hoc testing for two-way 

5. If the cell sizes, , are all the same then the average is 
exactly halfway between the dots. 

6. For equal cell sizes. For unequal cell sizes the x will still 
be somewhere along the line. 
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ANOVAs. This usually means comparing means pairwise cell by cell. 
As with one-way ANOVA that would mean also finding a suitable 
correction for the -value if -tests are used. We won’t cover post-
hoc testing for two-way ANOVAs in any detail here except to point 
out that post hoc testing for a  ANOVA is redundant. A 
ANOVA is essentially three  tests. If there is any interesting cell by 
cell difference, there will be an interaction. With a  ANOVA 
comparing cells is an interpretation problem, not one of statistical 
testing. The post-hoc test for a  ANOVA is really to figure out 
what generic profile plot matches your data. 

Next, let’s look at the ANOVA table for a two-way ANOVA. It looks 
like : 

Source Sum of 
Squares 

Degrees of 
Freedom Mean Square 

A 

B 

Within 
(error) 

Totals N-1 

The two-way ANOVA table is very similar to the one-way ANOVA 
table except that there is now one line for each of the three 
hypotheses (three signals) plus a line that essentially quantifies the 
noise. We could also add another column for the -value of the 
three effects. In the degrees of freedom formula,  is the number 
of levels for the  factor and  is the number of levels for the 
factor. The formula for  in the table is for a balanced design 
that has the same number, , of data points in each cell 

. The total number of data points in a balanced design is 

. For a generic design,  and 

. 

The formulae in the other columns are the same for any ANOVA 

340  |  12.5 Two-way ANOVA



table: MS = SS/  for each line, or effect, and MS
MS . Explicitly: 

   

and the  test statistics are 

   

For the critical statistics, which you look up in the F Distribution 
Table, the degrees of freedom to use are , 

,  and 
. 

Now all we need are the formulae for the sums of squares. These 
sums of squares formulae, and the two-way ANOVA that you are 
responsible for in this class are for a between subjects design. That is, 
the samples for each cell are independent, every data point is from a 
different individual. We also assume homoscedasticity, 

for all cells . Now to the SS formulae, we’ll just give them 
for a balanced design7. To do this we need to label the data points 
this way: use  where  and  label the cell (
and ) and  labels the data point within the cell (

)). First we define a “correction term”, , to keep 
the formulae simple: 

7. Of course, if you're using SPSS you don't need to restrict 
yourself to a balanced design. SPSS knows the generic SS 
formulae. 
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With this, the formulae for the sums of squares in a balanced 
design two-way ANOVA are: 
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Relax, you won’t have to chug your way through these sums of 
squares formulae in an exam. That would be way too tedious even if 
you are comfortable with all those summation signs. But we will take 
a look at using them in an example where we set up cell diagrams 
and use marginal sums to help us along. On an exam, you will be 
able to simply read the values for the sums of squares from an SPSS 
ANOVA table output. 

Example 12.4 : A researcher wishes to see whether the type of 
gasoline used and the type of automobile driven have any effect 
on gasoline consumption. Two types of gasoline, regular and high 
octane, will be used and two types of automobiles, two-wheel drive 
and four-wheel drive, will be used in each group. There will be two 
automobiles in each group for a total of eight automobiles used. The 
data, in cell form are (the DV is miles per gallon) : 
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Type of 
Automobile (B) 

2-Wheel 4-Wheel 

Gas 
(A) 

Regular 26.7 
25.2 

28.6 
29.3 

High 
Octane 

32.3 
32.8 

26.1 
24.2 

Using a two-way ANOVA at  test the effects of gasoline 
and automobile types on gas millage. 

Solution : 
0.Data Reduction. 
Here we will calculate the sums of squares, SS , SS , SS

and SS  (and SS ) by hand using marginal sums. Again, in an exam 
you will be given the sums of squares. But we will see marginal sums 
again when we do  contingency tables in Chapter 15. 

Beginning with the data on the left, sum each cell to give the 
numbers on the right. In summing each cell you are computing the 

terms ,  in the sum 
of squares equations on page 234. (Note that these sums are  times 
the means, , of the cells, which is what the two-way ANOVA 
compares: .) Next, compute the marginal 
sums, the sums of the rows, on the far right, and the sums of 
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the columns, on the bottom. Then compute the grand sum, the 
sum of everything, which is the the sum of the marginal sums on 
the right which equals the sums on the bottoms (which should be 
equal — a check). The marginal sums show up in the second inner 
brackets in the sums of squares formula. Notice that the sums of the 
rows collapse the design across  to give a one-way ANOVA for 
(main effect of ) and the sums of the columns collapse the design 
across  to give a one-way ANOVA for  (main effect of ). With 
the marginal sums we compute: 
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There. Now the sums of squares are ready for computing the test 
statistics. At this point you can start making your ANOVA table to 
keep track of your calculations. Here we’ll see the ANOVA table at 
the last step. 

1. Hypotheses. 

   

2. Critical statistics. 
There are three of them, one for each hypothesis pair. Use the F 
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Distribution Table with the  labelling the table equal to the test 
 since there are no such things as one and two tailed 

tests for ANOVA. From the F Distribution Table find: 
For : 

   

For : 

   

For : 

   

The critical statistics are all the same for a  ANOVA (
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 for all the hypotheses pairs — essentially three -tests 
because ). For bigger designs, the critical statistics will, 
in general, be different for each hypothesis pair. 

3. Test statistics. 
Use the sums of squares to compute: 

    

    

   

    

    

    

    

4. Decision. 
In general, we need three diagrams, but in this case all the critical 

statistics are the same so we can draw : 
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So : 

• For , do not reject , there is no main effect of . 
• For , reject , there is a main effect of . 
• For , reject , there is an interaction. 

5. Interpretation. 
Simply put, at  there is no effect of gas type (factor 
) on mileage; there is an effect of auto type (factor ) on gas 

mileage and; there is an interaction between gas type and mileage, 
the change in mileage with auto type depends on the gas type used. 
We’ll look at the profile plot to see if we really understand what this 
means but first we should complete the ANOVA table : 
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Source Sum of 
Squares 

Degrees 
of 

Freedom 
Mean 

Square p 

 (gas) 3.92 1 3.92 

 (auto) 9.68 1 9.68 

54.08 1 54.08 

Within 
(error) 3.30 4 0.825 

Totals 70.98 7 

To draw the profile plot, we need to do one more data reduction : 

So the profile plot (without error bars — but remember the 
numbers are fuzzy) is : 
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To interpret this fully, remember the rules from previously about 
collapsing by looking at the midpoints between the two  values 
and the midpoint of the lines. Here we see that averaged over auto 
types, it looks like there is no difference in gas mileage between gas 
type. That conclusion is statistically confirmed by the fact that we 
found no main effect of factor , gas — the two + values are not 
significantly different. The centres of the lines marked by the x are, 
however, significantly different because we found a main effect of 

, auto type. And the nature of the statistically significant 
interaction is obvious, the gas mileage can go up or down when 
you change gas types depending on what kind of car you drive. 
Switching from regular gas to high octane gas will improve your 
mileage if you drive a 4-wheel drive car but the mileage will get 
worse if you drive a 2-wheel drive car. 

▢ 
You will see bigger designs than a . Collapsing across  or 
 in those larger designs to get to one-way ANOVAs is conceptually 
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straightforward. The interaction is trickier, but the idea of an 
interaction existing when there are statistically non-parallel lines 
still holds. The  ANOVA is essentially three -tests. This 
makes the  ANOVA powerful and easy to interpret. As always, 
in statistics simpler is more powerful. We will take a brief 
quantitative look at statistical power in Chapter 13 but qualitatively, 
simpler is more powerful. 
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12.6 SPSS Lesson 9: Two-way 
ANOVA 

From the Data Sets, open the file “Relief.sav” : 

SPSS screenshot © International Business Machines Corporation. 

Note that there are now two independent variables, Treatment and 
Subject; Treatment has 3 levels, Subject has 3 levels. The cell 
structure is somewhat hard to see so you will have to be organized 
when you enter data on your own. The dependent variable is 
Response. To run the ANOVA, select Analyze  → General Linear 
Model  → Univariate : 
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SPSS screenshot © International Business Machines Corporation. 

which will give you this menu : 

SPSS screenshot © International Business Machines Corporation. 

where we have entered the independent variable, the factors, into 
the Fixed Factor box and the dependent variable into the dependent 
box. The submenus setups will be left pretty much alone, as with 
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the one-way ANOVA. There are post-hoc tests available but we will 
not worry about that for this course. In the Model menu, there is a 
check box for “intercept” which, if checked, will result in an extra 
line in the ANOVA table output that we will need to ignore. We will 
look at the output, below, that is generated if that box is checked. In 
the Options menu, check off Descriptive statistics (this will give cell 
means), Estimates of effect size (this will give ) and Homogeneity 
tests (Levine’s test for homoscedasticity) : 

SPSS screenshot © International Business Machines Corporation. 

The Plots menu is where you set up the profile plot output. Recall 
that you can view the 3D profile plot from two directions: along the 
A factor axis with the B factor plotted as separate lines or along the 
B factor axis with the A factor as horizontal lines. Here is what the 
menu looks like just before you hit the Add button : 
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SPSS screenshot © International Business Machines Corporation. 

Finally, hit the OK button to get the output. First comes the 
descriptive statistics where you can see the cell means and sample 
standard deviations : 

SPSS screenshot © International Business Machines Corporation. 
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The important ANOVA table output looks like : 

SPSS screenshot © International Business Machines Corporation. 

As usual, ignore the Corrected Model, the Intercept and the Total 
source lines. Factor  is the gender source line, factor  is the 
method source line, treatment*group is the  interaction 
source and Error is the within variance source. The Corrected Total 
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is the correct total of the , ,  and error SS and degrees 
of freedom. Interpretation is the thing you want out of this so 
looking at the  values we see that there is no main effect of 

, group, there is a main effect of , method and there is an 
interaction. No ,  and . The  of the ANOVA as a whole 
shows up on the corrected model line and is the same as the 
reported at the bottom of the table, ; it is a 
measure of how well the data fit the group means – a measure of 
how well the data fit the ANOVA model. We’ll explore the general 
linear ANOVA model in Chapter 17. 

The profile plots come out as : 

SPSS screenshot © International Business Machines Corporation. 

Look at the two line plot on the left and we clearly see the 
interaction in the “non-parallel” lines. Look at that interaction in 
another way: look at the difference, the separation, between the 
group values for each of the 3 methods and image a profile plot 
of those values. A one-way ANOVA on those values (remember, 
this is what the interaction hypothesis test does) finds a significant 
difference; in particular the difference between groups is greater 
for group 2 than for the other groups. 
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Plotting this the other way, as on the right above, we see the 
interaction manifest as non-parallel lines, but the difference of 
differences angle is harder to see. What you need to do to see it is, 
for each of the groups,  look at the average difference of methods 
with the mean of the methods. There is a significant difference 
between the average difference value for the groups. The main 
effect of method shows up as a significant difference between the 
center of the three lines. 

If you want to present a profile plot in a paper, you should show 
some error bars. Here’s how to get such a plot out of SPSS: first 
pick Graphs → Legacy Dialogs → Error Bars (pick boxplots to do 
boxplots). Then pick clustered with “Summaries are for groups of 
cases” : 

SPSS screenshot © International Business Machines Corporation. 

Set up the plot as follows : 
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SPSS screenshot © International Business Machines Corporation. 

The resulting plot is not that great (there’s no way here to create the 
lines): 

SPSS screenshot © International Business Machines Corporation. 

The boxplot version looks a little better, at least there are clearer 
colors there to show the line factor: 
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SPSS screenshot © International Business Machines Corporation. 

Compare this boxplot profile plot to the profile plot that came from 
running the two-way ANOVA. 
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12.8 Higher Factorial ANOVA 

We’ve seen 1-way ANOVA and 2-way ANOVA but it doesn’t have to 
stop there. We can have any number of factors, or independent 
variables. We can have 3-way ANOVA, 4-way ANOVA, etc. In general 
we can have an -way ANOVA. An -way ANOVA will have  IVs 
(  factors) but still only one DV. 

12.8.1 3-way ANOVA 

A 3-way ANOVA will have 3 factors (IVs): , , and  with ,  and 
 levels respectively. A 3-way ANOVA will test 7 hypotheses (all of 

which are one-way ANOVAs) : 

1. Main effect of  (collapse across  and ). 
2. Main effect of  (collapse across  and ). 
3. Main effect of  (collapse across  and ). 
4. 2-way interaction  (collapse across ). 
5. 2-way interaction  (collapse across ). 
6. 2-way interaction  (collapse across ). 
7. 3-way interaction . 

So there will be 7 test statistics to consider: 
   

The profile plots for a 3-way ANOVA are intrinsically 
4-dimensional and so can be difficult to draw. One approach is to 
make  2-way style ANOVA plots : 
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The interpretation of a 3-way interaction can be tough and there 
will be many post-hoc pairwise comparisons of cells that may be 
meaningful. For these reasons it is best to be more reductionist 
in your experiment designs so that you never have to use a 3-way 
ANOVA. A design that uses preplanned contrasts  is usually better 
than one that requires a 3 (or higher) way ANOVA. 

For an -way ANOVA, there will be 

    

hypotheses to test, each with an associated  test statistic. The 
number of profile plots to consider will be large and will necessarily 
involve collapsing factors because the data exist in an 
dimensional space (number of IVs plus DV). Interpretation will be 
a nightmare. An -dimensional ANOVA for  is more of a 
mathematical curiosity than a useful scientific tool. 
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12.9 Between and Within 
Factors 

So far, all of our factors have been between subject, or independent, 
factors. But it is possible to have any or all of the factors as within 
subject, or dependent, factors in a so-called repeated measures 
design. In a repeated measures design you will have more than 
one DV, more than one measurement from each subject. When you 
have more than one DV per subject, you have measured a vector1 

from each subject not just a number. When you measure a vector 
instead of a number you need multivariate statistics. The repeated 
measures approach is an approach that is between univariate and 
multivariate statistics. With repeated measures you set up your 
ANOVA as if it were a univariate design and use modified sums of 
squares and corresponding  test statistics. Certain assumptions 
need to be satisfied before you can do repeated measures ANOVA 
with the most important criteria being one known as “sphericity”2. 
If sphericity fails then you need to use the full-blown multivariate 
approach known as MANOVA (Multivariate ANOVA). If you use SPSS 
to do a within subjects ANOVA then you can use the sphericity 
hypothesis test output in the same way that you used the Levine’s 
test output when deciding to use the homoscedastic or 
heteroscedastic -test result from SPSS. Sphericity is  so if SPSS 
fails to reject  then you can use the repeated measures results. 

1. A vector is a collection of numbers. We will have more to 
say about vectors in Chapter 17. 

2. Sphericity will be covered in a later edition of this text in 
a MANOVA chapter. 
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If  for the sphericity test then you reject  and you will 
need to set up a MANOVA. 

When you have a two-way (or higher factorial) ANOVA then mixed 
designs are possible where one factor is a between subjects factor 
and the other is a within subjects factor. 

12.9.1 *One-way ANOVA with between 
factors 

To be completed in a later edition of this text. 
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12.10 *Contrasts 

To be completed in a later edition of this text. 
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13. POWER 
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13.1 Power 

Power is a concept that applies to all statistical testing. Here we 
will look at power quantitatively for the -test for means ( -test 
with large ). We will see explicitly in that case some principles that 
apply to other tests. These principles are: the bigger your sample 
size ( ), the higher the power; the larger  is, the more power there 
is1; the larger the “effect size” is the more power there is. A final 
principle, that we can’t show by restricting ourselves to a -test, is 
that the simpler the statistical test, the more power it has — being 
clever doesn’t get you anywhere in statistics. 

Let’s being by recalling the “confusion matrix” (here labelled a 
little differently than the one shown in Chapter 9 to emphasize 
the decision making). Note: The , , etc. quantities are the 
probabilities that each conclusion will happen. 

Reality 

Conclusion 
of Test 

Type I error 
Correct 
decision 

Correct 
decision 

Type II 
error 

Recall that  is the power, the probability of correctly 
rejecting . With the definition of  as not , we cannot 
actually compute a power because this definition is too vague. The 
confusion matrix with  and  as given here is purely a 

1. And a corollary of this will be that one-tailed tests are 
more powerful than two-tailed tests. 
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conceptual device. To actually compute a power number we need to 
nail down a specific alternate hypothesis  and compute  for the 
more specific confusion matrix: 

Reality 

Conclusion 
of Test 

Type I error 
Correct 
decision 

(power) 

Correct 
decision 

Type II 
error 

We will define  and  be three parameters. The first is that 
we assume that the populations associated with  and  both 
have the same standard deviation . Then, assuming that both 
populations are normal,  is defined by its population mean 
(we used  in Chapter 9) and  is defined by its population mean 

. 
We can define two flavors of power : 

1. Predicted power. Based on a pre-defined alternate mean  of 
interest and an estimate of . The population standard 
deviation  is frequently estimated from the sample standard 
deviation  of a small pilot study. 

2. Observed power. Based on the observed sample mean  which 
is then used as the alternate mean  and sample standard 
deviation  which is used for . 

The type II error rate  (and power ) is calculated by 
considering the populations associated with  and  : 
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This picture follows directly from the Central Limit Theorem. 
Hypothesis testing is a decision process. In the picture above, which 
shows a one-tailed -test for means, you reject  if  falls to 
the right of the decision point. The decision point is set by the 
value of . Note that the alternate mean  needs to be in the 
rejection region of  for the picture to make sense. The value 
of  (and hence the power ) depends on the magnitude of 
the effect size2 . We can see that power will increase if 
the effect size that we are looking for in our experiment increases. 
This makes sense because larger differences should be easier to 
measure. Also note that if  increases, as it would by replicating an 
experiment with a larger sample size, then the two distributions of 

2. Effect size as defined in the Green and Salkind SPSS 
book would be . But that quantity is not 
useful here, so we define effect size as the difference of 
the means for the purpose of this discussion on power. 
Reference: Green SB, Salkind NJ. Using SPSS for 
Windows and Macintosh: Analyzing and Understanding 
Data, new edition pretty much every year, Pearson, 
Toronto, circa 2005. 
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sample means will get skinner and, for a given effect size, the power 
will increase. Again, this makes intuitive sense because more data 
is always better. We will illustrate these features in the numerical 
examples that follow. 

For the purpose of learning the mechanics of statistical power we 
focus on observed power. With observed power we use the sample 
data for the power calculations; set  and . Since 
needs to be in the rejection region of , observed power can only 
be computed when the conclusion of the hypothesis test is to reject 

. In real life if you reject  you don’t care about what power 
the experiment had to reject . It’s a bit like calculating if you 
have enough gas to drive to Regina after you’ve arrived at Regina. 
In real life you will care about power only if you fail to reject 
because you will want to know the problem was that you tried to 
measure too small of an effect size or if a larger sample might lead 
to a decision to reject . In that case you will need to decide 
what effect size, or sample size, to use in computing a predicted 
power. You will use predicted power in your experiment design. If 
your experiment design has a predicted power of about 0.80 then 
you have a reasonable chance of rejecting the null hypothesis. If 
your research involves invasive intervention with people (needles, 
surgery, etc.) then you may need to present a power calculation to 
prove to an ethics committee that your experiment has a reasonable 
chance of finding what you think it will find. 

In addition to  and  we need the value of the 
decision point  which is the inverse -transform of 
. We’ll consider three cases : 

Case 1. Right tailed test: 
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where, In this case 

    

Case 2. Left tailed test: 
    

where, In this case 

    

Case 3. Two-tailed test: 
    
(a)  in the right tail : 
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(b)  in the left tail: 

where, in both cases: 

    

In both two-tailed cases, notice the small piece of  area 
on the side of the  distribution on the opposite side from . It 
turns out that the area of that small part is so incredibly small that 
we can take it to be zero. This will be obvious she we work through 
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the examples. So the upshot is that going from a one-tailed test to 
a two-tailed test effectively decreases  to  which increases 
and decreases the power . One-tailed tests have more power 
than two-tailed tests for the same . 

Example 13.1 Right tailed test. 
Given : 

, , , 
Find the observed power. 

Step 1 : Look up  in the t Distribution Table for a 
one-tailed test: . 

Step 2 : Compute : 

    

Step 3 : Draw picture : 

Step 4 : Compute the -transform of  relative to  : 
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Step 5 : Look up the area  in the Standard Normal 
Distribution Table. That area will be : 

, so  and 
power =  0.7611. 

▢ 
Example 13.2 : Another right tailed test with the data the same 

as in Example 13.1 but with a smaller . This example shows how 
reducing  will reduce the power. With reduced power, it is harder 
to reject . 

Given : 

, , , 
Find the observed power. 

Step 1 : Look up  in t Distribution Table for a one-
tailed test: . 

Step 2 : Compute : 

    

Step 3 : Draw picture : 
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Step 4 : Compute the -transform of  relative to  : 

    

Step 5 : Look up the area  in the Standard Normal 
Distribution Table. That area will be . So 

 and power =  0.5120 
which is smaller than the power found in Example 13.1. 

▢ 
Example 13.3 : Another right tailed test with the data the same 

as in Example 13.2 but with larger . This example shows how 
increasing the sample size increases the power. This makes sense 
because more data is always better. 

Given : 

, , , 
Find the observed power. 

Step 1 : Look up  in t Distribution Table for a one-
tailed test: . 
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Step 2 : Compute : 

    

Step 3 : Draw picture : 

Step 4 : Compute the -transform of  relative to  : 

    

Step 5 : Look up the area  in the Standard Normal 
Distribution Table. That area will be . So 

 and power =  0.9608 
which is larger than the power found in Example 13.2. 
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▢ 
Example 13.4 : Another right tailed test with the data the same as 

in Example 13.3 but with a smaller value for  which leads to 
a smaller effect size. This example shows how decreasing the effect 
size decreases the power. This makes sense because it is harder to 
detect a smaller signal. 

Given : 

, , , 
Find the observed power. 

Step 1 : Look up  in the t Distribution Table for a 
one-tailed test: . 

Step 2 : Compute : 

    

Step 3 : Draw picture : 

Step 4 : Compute the -transform of  relative to  : 
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Step 5 : Look up the area  in the Standard Normal 
Distribution Table. That area will be . So 

 and power =  0.5478 
which is smaller than the power found in Example 13.3. 

▢ 
Example 13.5 : Left tailed test. 
Given : 

, 
, , , 

Find the observed power. 
Step 1 : Look up  in the t Distribution Table for a 

one-tailed test: . 
Step 2 : Compute : 

    

Step 3 : Draw picture : 
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Step 4 : Compute the -transform of  relative to  : 

    

Step 5 : Look up the area  in the Standard Normal 
Distribution Table. That area will be . So 

 and power =  0.8810. 
▢ 

Example 13.6 : Two tailed -test with data the same as Example 
13.5. 

Given : 
, 

, , , 
Find the observed power. 

Step 1 : Look up  in the t Distribution Table for a 

one-tailed test: . 
Step 2 : Compute: 
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and 

    

Step 3 : Draw picture : 

Step 4 : Compute the -transform of  and  relative to 
: 
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and 

    

Step 5 : The two values,  and  appear on the 
-distribution as : 

So using the areas  from the Standard Normal Distribution 
Table we find 

   

Notice that  is way the heck out there, it is higher 
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than any  given in the Standard Normal Distribution Table. So 
 is essentially 0.5; the tail area past  is 

essentially zero. So the effect of going to from a one-tail to a two-
tail test is only felt by the size of the  critical region on the 
side where the test statistic (  here) is, which is half the size of the 
critical region in a one-tail test for a fixed . In this case, then, the 
power =  0.8078 which is smaller than the value found in 
Example 13.5. 

▢ 

Using observed power 

As mentioned earlier, almost no one is interested in observed power 
because we must reject  to compute it. People are interested in 

 and power only when you report a failure to reject . 
Suppose in the situation of Example 13.1 we wanted to find 

evidence that  but measured  (fail to reject 
). Then, with our given information of 

, 
, , ,  and 

we have 
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Based on the calculation we did in Example 13.1 we would report 
that we had a power of 0.7611 to detect an effect of  but 
with  we were unable to detect . 
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14. CORRELATION AND 
REGRESSION 
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14.1 Scatter Plots 

You can make a scatter plot of your data when you have values 
for two or more variables for each subject. Here we will only be 
interested in the case where we have a pair of variables (2D plot). 

Of the two variables, for application to regression, one will be an 
independent variable (IV) and the other a dependent variable (DV). 
The IV is usually a variable that is known with a high degree of 
precision (like age). The idea with regression (when we get to it) is to 
come up with a formula that allows you to predict what the DV will 
be if you know the IV. We will use the symbol  for the IV and  for 
the DV. 

The best way to see what a scatter plot is is to plot one. With the 
data: 

Student No. of 
absences, grade, 

A 6 82 

B 2 86 

C 15 43 

D 9 74 

E 12 58 

F 5 90 

G 8 78 

the scatterplot is: 
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A couple of things to notice in the plot are: 1. An eyeball best line 
fit has been drawn through the scatterplot points. With regression 
we will calculate exactly what that best fit line is. 2. If  and  are 
linearly related then the points will fall inside an ellipse. If the ellipse 
is long and skinny,  and  are said to to be highly correlated. If 
the ellipse is more like a circle the  and  are not correlated. By 
looking at a scatter plot you can judge if  and  are linearly related. 
If your scatterplot looks like: 
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then you could conclude that  and  are not linearly related and 
it will not make much sense to try and fit a line through the data or 
to compute a correlation coefficient. 
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14.2 Correlation 

The correlation coefficient we will use here is called the “Pearson 
product moment correlation coefficient” and will be represented by 
the following symbols : 

 — population correlation 
 — sample correlation 

The correlation is always a number between  and  : 
 and . If  (or ) equals 0 then 

that means there is no correlation between  and . A minus sign 
means a minus slope, a plus sign means a positive slope. 

The formula for  is1 : 

(14.1)  

1. The formula for  is the same with all  and  in the 
population used. 
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Example 14.1 : Compute the correlation between  and  for the 
data on Section 14.1 used for the scatter plot. 

Solution : To compute , first make a table, fill in the data columns 
(on the right of the double vertical line below), fill in the other 
computed columns, sum the columns and finally plug the sums into 
the formula for  : 

Subject 

A 6 82 492 36 6724 

B 2 86 172 4 7396 

C 15 43 645 225 1849 

D 9 74 666 81 5476 

E 12 58 696 144 3364 

F 5 90 450 25 8100 

G 8 78 624 64 6084 

Plug in the numbers : 
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Here there is a strong negative relationship between  and . 
That is, as  goes up,  goes down with a fair degree of certainty. 
Note the  is not the slope. All we know here, from the correlation 
coefficient, is that the slope is negative and the scatterplot ellipse is 
long and skinny. 

▢ 
Standard warning about correlation and causation : If you find that 
 and  are highly correlated (i.e.  is close to  or ) then 

you cannot say that  causes  or that  causes  or that there is 
and causal relationship between  and  at all. In other words, it is 
true that if  causes  or that  causes  then  will be correlated 
with  but the reverse implication does not logically follow. So 
beware of looking for relations between variables by looking at 
correlation alone. Simply finding correlations by themselves doesn’t 
prove anything. 

The significance of  is assessed by a hypothesis test of 
    
To test this hypothesis, you need to convert  to  via: 

    

and use  to find . The Pearson Correlation 
Coefficient Critical Values Table offers a shortcut and lists critical 

 values that correspond to the critical  values. 
Example 14.2 : Given ,  and , test 

if  is significant. 
Solution : 
1. Hypothesis. 
2. Critical statistic. 
From the t Distribution Table with 

 and  for a two-tailed test 
find 

    
As a short cut, you can also look in the Pearson Correlation 
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Coefficient Critical Values Table for ,  to find 
the corresponding 

    
3. Test statistic. 

   

4. Decision. 
Using the  : 

or using the Pearson Correlation Coefficient Critical Values 
Table short cut : 
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we conclude that we can reject . 
5. Interpretation. The correlation is statistically significant at 

. 
▢ 
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14.3 SPSS Lesson 10: 
Scatterplots and Correlation 

Open “Hypertension.sav” from the Data Sets and pick Analyze → 
Correlate → Bivariate: 

SPSS screenshot © International Business Machines Corporation. 

In the menu that pops up, move all the variables over: 
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SPSS screenshot © International Business Machines Corporation. 

and hit OK to get the following output: 

SPSS screenshot © International Business Machines Corporation. 

This result, when you just look at the Pearson correlation 
coefficients, is a correlation matrix. Specifically, the correlation 
matrix for these four variables, looking at the SPSS output is: 
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Note that the correlation matrix has ones on the diagonal — a 
variable is perfectly correlated with itself. The matrix is also 
symmetric which means that the numbers above the ones are the 
same as the ones directly across below the ones — the correlation 
between  and  is the same as the correlation between  and . 
We’ll be introduced to matrices more systematically in Chapter 17. 
The correlation matrix is at the heart of multivariate statistics in a 
way that standard deviation is at the heart of univariate statistics. 

Other thing to notice in the SPSS output is the significance of the 
correlation coefficients. This significance is determined using the 
statistic given in Section 14.2. SPSS puts ** by  values that have 

 and a * by those correlations with . The 
-values themselves are also given in the SPSS output. 

Sometimes you will not be interested in the complete correlation 
matrix but only in the correlations of one group of variables with 
another group. For example here we may want to lump the variables 
academic common friend and intimate together and see what their 
correlations are with the general variable. To get the associated 
partial correlation matrix, open the Analyze → Correlate → Bivariate 
dialog again, move all the variables over (if they are not already 
there) and hit Paste instead of OK. That will bring up the syntax 
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editor. In the /VARIABLES line, add the word “with” between 
academic and general as shown: 

SPSS screenshot © International Business Machines Corporation. 

SPSS screenshot © International Business Machines Corporation. 

Then hit the big green triangle (“run”) to get: 
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Next, let’s do some scatterplots. First, a simple scatterplot of two 
variables. Pick Graphs → Legacy dialogs → Scatter/Dot to get: 

SPSS screenshot © International Business Machines Corporation. 

where we pick Simple. This gives: 

SPSS screenshot © International Business Machines Corporation. 

where two variables have been picked for plotting. (Note that if we 
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had a variable with subject names, we could move that variable into 
the labels slot and get scatter plots with each point labeled by the 
subject name.) The result, after hitting OK, is: 

SPSS screenshot © International Business Machines Corporation. 

The correlation matrix output above reported that the correlation 
between these two variables was not significant and it does not 
appear that the points in the scatterplot are contained in a longish 
ellipse. 

Instead of picking Simple in the graph pop up menu, pick Matrix 
Scatter and move all of the variables over for analysis in the menu 
that pops up after that: 
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SPSS screenshot © International Business Machines Corporation. 

The result is a matrix of scatterplots: 

SPSS screenshot © International Business Machines Corporation. 

Finally, for fun, pick 3D scatter in the first pop up menu and then 
pick three variables to get: 
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SPSS 
screenshot © 
International 
Business 
Machines 
Corporation. 

SPSS screenshot © International Business Machines Corporation. 

If you double click on the graphic, it will pop out into a Chart Editor 
and you can select a 3D rotation icon at the top (the little helper pop 
ups can help you find it): 

After you click the 3D rotation icon at the top, you can grab the 
3D plot with the mouse and rotate it around. 
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14.5 Linear Regression 

Linear regression gives us the best equation of a line through the 
scatter plot data in terms of least squares. Let’s begin with the 
equation of a line: 

    
where  is the intercept and  is the slope. 

The data, the collection of  points, rarely lie on a perfect 
straight line in a scatter plot. So we write 

    
as the equation of the best fit line. The quantity  is the predicted 

value of  (predicted from the value of ) and  is the measured 
value of . Now consider : 

14.5 Linear Regression  |  409



The difference between the measured and predicted value at data 
point , , is the deviation. The quantity 

    
is the squared deviation. The sum of the squared deviations is 

    

The least squares solution for  and  is the solution that 
minimizes , the sum of squares, over all possible selections of 
and . Minimization problems are easily handled with differential 
calculus by solving the differential equations: 

    

The solution to those two differential equations is 

    

and 
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Example 14.3 : Continue with the data from Example 14.1 and find 
the best fit line. The data again are: 

Subject 

A 6 82 492 36 6724 

B 2 86 172 4 7396 

C 15 43 645 225 1849 

D 9 74 666 81 5476 

E 12 58 696 144 3364 

F 5 90 450 25 8100 

G 8 78 624 64 6084 

Using the sums of the columns, compute: 

    

and 
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So 

    

▢ 
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14.5.1: Relationship between correlation and 
slope 

The relationship is 

    

where 

    

are the standard deviations of the  and  datasets considered 
separately. 
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14.6 r² and the Standard Error 
of the Estimate of y′ 

Consider the deviations : 

Looking at the picture we see that 

   

Remember that variance is the sum of the squared deviations 
(divided by degrees of freedom), so squaring the above and summing 
gives: 

    

(the cross terms all cancel because  is the least square solution 
and , see Section 14.6.1, below, for details). This is also 
a sum of squares statement: 
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where SS , SS  and SS

 are the sum of squares — error, sum of 
squares — total and sum of squares — regression (explained) 
respectively. 

Dividing by the degrees of freedom, which is  in this {\em 
bivariate} situation, we get: 

   

It turns out that 

    

The quantity  is called the coefficient of determination and gives 
the the fraction of variance explained by the model (here the model is 
the equation of a line). The quantity  appears with many statistical 
models. For example with ANOVA it turns out that the “effect size” 
eta-squared is the fraction of variance explained by the ANOVA 
model1, . 

1. In ANOVA the ``model'' is the difference of means 
between the groups. We will see more about this aspect 
of ANOVA in Chapter 17. 
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The standard error of the estimate is the standard deviation of the 
noise (the square root of the unexplained variance) and is given by 

   

Example 14.4: Continuing with the data of Example 14.3, we had 

   

so 

   

▢ 
Here is a graphical interpretation of  : 
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The assumption for computing confidence intervals for is that 
is independent of . This is the assumption of homoscedasticity. 
You can think of the regression situation as a generalized one-
way ANOVA where instead of having a finite number of discrete 
populations for the IV, we have an infinite number of (continuous) 
populations. All the populations have the same variance  (and 
they are assumed to be normal) and  is the pooled estimate of 
that variance. 

14.6.1: **Details: from deviations to 
variances 

Squaring both sides of 

    
and summing gives 

   

Working on that cross term, using , we get 
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where 

    

was used in the last line. 
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14.7 Confidence Interval for y′ 
at a Given x 

At a fixed  (that is important to remember) the confidence interval 
for  is 

    
where 

    

where, as usual,  comes from the t Distribution Table with 
. 

Example 14.5 : Continuing from Example 14.4 (so you can see how 
an exam will go), say we want to predict the grade ( ) in terms of a 
95  confidence interval for the number of absences ( ) equal to 10. 

First, find the value predicted from the regression line, which we 
previously found to be : 

    
at . The result is 

    
Furthermore, from the last example, we found 

    
and, from the completed data table (Example 14.3) 

    

We still need  and . Using our sums: 

    

and from t Distribution Table for the 95  confidence interval, 
 we get 
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Now we compute  : 

   

So 

    

This is the 95  confidence interval for predicting the mark of a 
person who was absent for 10 days. 

▢ 
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Important:  is independent of  but  is not. So confidence 
intervals look like : 

The reason for this variance of the width of the confidence 
interval comes from the uncertainty in the slope . You can make 
plots like the one above in SPSS. 
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14.8 SPSS Lesson 11: Linear 
Regression 

Open “Hypertension.sav” from the Data Sets: 

SPSS screenshot © International Business Machines Corporation. 

This dataset has a number of variables having to do with a study that 
is looking for a way to predict injury on the basis of strength. So 
is the dependent ( ) variable. To get one independent variable, we’ll 
arbitrarily pick  as our independent variable . Next pick Analyze 
→ Regression → Linear, 
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SPSS screenshot © International Business Machines Corporation. 

and move the independent and dependent variables into the right 
slots : 

SPSS screenshot © International Business Machines Corporation. 
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SPSS screenshot © International Business Machines Corporation. 

You can look through the submenus if you like but they primarily 
give options for multiple regression and require the consideration 
of the independent variable as a vector instead of as a number 
— this elevation of data from a number to a vector is the basis 
of multivariate statistics so we’ll leave that for now. Running the 
analysis produces four output tables. You can ignore the “Variables 
Entered/Removed” table (it is for advanced multiple regression 
analysis). The other tables show : 

The “Model Summary” gives  and  plus  and  that we’ll 

discuss when we look at multiple regression. The ANOVA table gives 
information about the significance of  (and therefore of the overall 
significance of the regression). We used  to test the significance of 

. You can recover the  test statistic from  in the ANOVA table; 
. Here  so the model fit is not significant (do 

not reject ). Even though the fit is not significant, the regression 
can still be done and this is reported in the last output table. The 
coefficients are reported in the B column. They are called 
Unstandardized Coefficients because the data,  and , have not 
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been -transformed. The first line gives the intercept (  or ), the 
second line the slope (  or ) so 

    

For each of the two regression coefficients, a standard error can 
be computed, along with confidence intervals for the coefficients, 
and the significance of the coefficients (H : ) tested with a 
 test statistic. We haven’t covered that aspect of linear regression 

but we can see the standard errors,  test statistics and associated 
 values in the “Coefficients” output table. Here , the intercept, 

is significant while  the slope, is not. The last thing to notice is 
Beta in the Standardized Coefficients column. Imagine that we 
-transform our variables  and  to  and  and then did a linear 
regression on the -transformed variables. Then the result would 
be 

    

In this case the regression is still insignificant, -transforming 
can’t change that. There is no intercept in this case because the 
average of each of -transformed variables is zero and this leads to 
an intercept of zero. 

Finally, let’s see how we can plot the regression line. Generate a 
scatterplot and then double click on the plot and then click on the 
little icon that shows a line through scatterplot data : 
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SPSS screenshot © International Business Machines Corporation. 

and 

SPSS screenshot © International Business Machines Corporation. 

The equation of the regression line is computed instantly and is 
plotted. 
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14.10 Multiple Regression 

Multiple regression is to the linear regression we just covered as 
one-way ANOVA is to -way ANOVA. In -way ANOVA we have 
one DV and  discrete IVs. With multiple regression we have one 
DV (univariate) and  continuous IVs. We will label the DV with 
and the IVs with . The idea is to predict  with 
via 

    
or, using summation notation 

    

Sometimes we (and SPSS) write . The explicit formula 
for the coefficients  and  are long so we won’t give them here 
but, instead, we will rely on SPSS to compute the coefficients for 
us. Just the same, we should remember that the coefficients are 
computed using the least squares method, where the sum of the 
squared deviations is minimized. That is,  and the  are such that 

    

is minimized. (Here we are using  to 
represent data point .) If you like calculus and have a few minutes 
to spare, the equations for  and the  can be found by solving: 
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for  and the . The result will contain al the familiar terms like 
, , etc. It also turns out that the “normal equations” for 

 and the  that result have a pattern that can be captured with a 
simple linear algebra equation that we will see in Chapter 17. 

Some terminology: the  (including ) are known as partial 
regression coefficients. 

14.10.1: Multiple regression coefficient, r 

An overall correlation coefficient, , can be computed using 
pairwise bivariate correlation coefficients as defined in the previous 
Section 14.2. This overall correlation is defined as , the 
bivariate correlation coefficient of the predicted values  versus 
the data . For the case of 2 IVs, the formula is 

    

where  is the bivariate correlation coefficient between  and 
, etc. It is true that  as with the bivariate . 

Example 14.6 : Suppose that you have used SPSS to obtain the 
regression equation 

    
for the following data : 

428  |  14.10 Multiple Regression



Student GPA, Age, Score, 

A 3.2 22 550 10.24 484 302500 1760 12100 70

B 2.7 27 570 7.29 729 324900 1539 15390 72.9 

C 2.5 24 525 6.25 576 275625 1312.5 12600 

D 3.4 28 670 11.56 784 448900 2278 18760 95.2 

E 2.2 23 490 4.84 529 240100 1078 11270 50

Compute the multiple correlation coefficient. 
Solution : 
First we need to compute the pairwise correlations , 

, and . (Note that  = , etc. because the correlation 
matrix is symmetric.) 

   

14.10 Multiple Regression  |  429



   

   

Now use these in : 
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▢ 

14.10.2: Significance of r 

Here we want to test the hypotheses : 

    

where  is the population multiple regression correlation 
coefficient. 

To test the hypothesis we use 

    

with 
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here: 

    

(Note: This “ -test” is similar to but not the same as the “ANOVA” 
output given by SPSS when you run a regression.) 

Example 14.7 : Continuing with Example 14.6, test the significance 
of . 

Solution : 
1. Hypotheses. 

    

2. Critical statistic. From the Rank Correlation Coefficient 
Critical Values Table (i.e., the critical values for the Spearman 
correlation) with 

    

find 

    
3. Test statistic. 
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4. Decision. 

Reject . 
5. Interpretation. 

 is significant. 
▢ 
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14.10.3: Other descriptions of correlation 

1. Coefficient of multiple determination: . This quantity still 
has the interpretation as fraction of variance explained by the 
(multiple regression) model. 

2. Adjusted : 

    

 gives a better (unbiased) estimate of the population 

value for  by correcting for degrees of freedom just as the 
sample  with its degrees of freedom equal to  gives an 
unbiased estimate of the population . 

Example 14.8 : Continuing Example 14.6, we had  so 
    
and 

    

▢ 
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14.11 SPSS Lesson 12: Multiple 
Regression 

Open “Hypertension.sav” from the Data Sets: It is very similar to the 
data file we used for demonstrating simple linear regression in SPSS 
but now we have more variables to choose from for independent 
variables. As before, we really should combine the strength variables 
but we’ll pick  and . Let’s pick age as a second independent 
variable, . Pick Analyze → Regression → Linear and enter the 
independent and dependent variables : 

SPSS screenshot © International Business Machines Corporation. 

We will again ignore the submenus but note this time that they are 
to set up what is known as step-up and step-down analysis where 
independent variables are added or removed in an attempt to get 
a better fitting model by removing independent variables that are 
correlated with each other. The relevant output is (ignoring the 
table meant for step-up and step-down analysis) : 
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SPSS screenshot © International Business Machines Corporation. 

The “Model Summary” table gives ,  (here the model explains 5.7
 of the variance of ),  and  for multiple regression which 

we did not look at explicitly for multiple regression. The “ANOVA” 
table gives the test statistic  for the significance of  along with 
its  value, which is not significant here. Again, note that this is not 
the  we looked at in Section 14.10.2, notice the drastic difference 
in the degrees of freedom between for the two  values. But both 
do test the significance of the overall . The models given by the 
“Coefficients” table are : 

    

Note that the intercept is significant but the two slopes are not. If 
the variables were -transformed first then we’d have: 

    

There is no way to get SPSS to plot the best fit plane through 3D 
scatterplot data. 
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15. CHI SQUARED: 
GOODNESS OF FIT AND 
CONTINGENCY TABLES 

Recall that the  is essentially the distribution of sample variances 
 from a normal population. It has three important applications 

(there are others) : 

1. Hypothesis test of population variance (covered in Section 9.5). 
2. Model fitting through  (not covered in this 

course). 
3. Hypothesis test of frequencies : 

a) Goodness of fit 
b) contingency tables. 

Here we focus on the last application. We will use the  statistic 
to compare the measured (or observed) statistic with expected (
) frequencies. The difference of observed and expected frequencies 
squared represents a variance. If the difference between observed 
and expected frequencies is due to noise, which will have some sort 
of binomial distribution, then we expect the  statistic to be low. If 
the difference between observed and expected frequencies is large 
then there must be an effect other than noise that is causing that 
difference. 
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15.1 Goodness of Fit 

For both the  goodness of fit and the  contingency table tests, 
the test statistic is 

    

where 
 = Observed frequency of category  (the measurement) 
 = Expected frequency of category  ( ). 

 = number of categories. 
For the goodness of fit test, the degrees of freedom for the critical 
statistic is . 

Limitation : In order for the  test of frequencies to be valid 
(because of noise has a binomial distribution), all frequencies (
and ) must be  to be considered reliable. 

Example 15.1 (Goodness of Fit example) 
The advisor of an ecology club believes that the club consists 

of  freshmen,  sophomores,  juniors and 
seniors. The actual membership this year consisted of 14 freshmen, 
19 sophomores, 51 juniors and 16 seniors. At  test the 
advisor’s conjecture. 

Solution : 
0. Data reduction. Compute the observed and expected 

frequencies. In this example the total number of students is 
 so if we label the categories as : 

category 1 = freshmen 
category 2 = sophomores 
category 3 = juniors 
category 4 = seniors 
then , , ,  (converting 
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percentages to frequencies) 
and , , , . 

1. Hypotheses. 

   

2. Critical statistic. Using the Chi-Square Distribution Table with 
 (note that we only worry about the right tail as with 

test statistics in ANOVA),  we find 

    

3. Test statistic. 

   

4. Decision. 
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Reject . 
5. Interpretation. The advisor’s conjecture is wrong at 

. A plot of observed and expected frequencies (which we will plot 
as overlapping frequency polygons) shows how the observed 
frequencies are not a good fit to the expected frequencies : 
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Here the fit of the data to the  profile is not very good. If the 
fit between the observed frequencies (data) profile and the expected 
frequencies ( ) profile is good, then  will be small. 

▢ 

15.1.1: Test of Normality using the 
Goodness of Fit Test 

To test the hypotheses : 
 : The DV is normally distributed 

 : The DV is not normally distributed 
using the goodness of fit  test1 we first need to define the 

number of categories to use. The choice of how many categories to 
use is a bit of an art2. To work our way through the example below, 
we’ll take the category definition as a given. Then we’ll find that we’ll 
have to change that definition in order to have a valid  test. This 
is how things will usually go in real life. The procedure for testing 
normality with a goodness of fit test is illustrated by example : 

1. This is a test of the assumptions that might underlie a 
test of interest. This test, like most hypotheses tests 
applied to test assumptions, will find the desired 
assumption to be true when you fail to reject . There 
are other tests for normality that we don't cover in this 
course. One of the more popular tests for normality is 
the Komolgorov-Smirnov test for comparing 
distributions. 

2. The choice of how many categories to choose for making 
a histogram is in general a wide open question. 
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Example 15.2 : Suppose we have a dataset of 200 values of some 
measured DV. That is, suppose we have a sample of size 
from a single population. Suppose further that  DV 
. That is ,  and the range is . Let us 
(arbitrarily) divide the range into  categories. Then (recall 
Chapter 2) the class width is 

    

Suppose, finally, that the frequency table for the data is : 

Class Class 
Boundaries 

Frequency, Midpoint, 

1 89.5 — 
104.5 24 97 2328 225,816 

2 104.5 — 
119.5 62 112 6944 777,728 

3 119.5 — 
134.5 72 127 9144 1,161,288 

4 134.5 — 
149.5 26 142 3692 524,264 

5 149.5 — 
164.5 12 157 1884 295,788 

6 164.5 — 
179.5 4 172 688 118,366 

= 200 

At this point it will be useful for you to do a short exercise : Plot 
a histogram of this frequency table. If the data are normally 
distributed then the histogram will look approximately like a normal 
curve. The  goodness of fit test that we will do quantifies this 
eyeball test. 

Next, compute  and  using the sums from the table. Recall the 
group formulae : 
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and 

    

Now we are mostly ready to go through the  goodness of fit 
hypotheses test : 

0. Data reduction. 
The frequency table for our data give the observed frequencies. 

Now we need to compute the expected frequencies by considering 
areas under the normal distribution that has the same mean, 

, and standard deviation, , as our data. 
We’ll get those areas from the Standard Normal Distribution Table 
after -transforming our data. Once we have the area, , for each 
category , then we convert it to the expected frequency using 

. These calculations are completed in the following 
table where the -transforms of the category boundaries are 
computed using the usual . Notice that we used 

 and  in place of the -transforms of  and  just to 
catch the very tiny areas in the tails of the  distribution. In the last 
column  are copied from the data frequency table. 
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Class Class 
Boundaries –transformed 

Standard 
Normal 

Distribution 
Table Areas 

1 89.5 — 
104.5  to -1.11 26.7 24 

2 104.5 — 
119.5 -1.11 to -0.23 55.1 62 

3 119.5 — 
134.5 -0.23 to 0.65 66.64 72 

4 134.5 — 
149.5 0.65 to 1.53 38.96 26 

5 149.5 — 
164.5 1.53 to 2.41 11.0 12 

6 164.5 — 
179.5 2.41 to 1.6 4 

The areas on the  distribution look like : 

Recall that the goodness of fit  test is valid only if all the 
frequencies are . The frequencies of class 6 are too low. As a 
quick fix, we’ll combine classes 5 and 6 into a new class 5. The class 
width of this new class will be twice that of the other classes but we 
can live with that. So, finally, the observed and expected frequencies 
that we’ll use for the hypothesis test are : 
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Class 

1 26.7 24 

2 55.1 62 

3 66.64 72 

4 38.96 26 

5 12.6 16 

1. Hypotheses. 
 : The population is normally distributed. 

 : The population os not normally distributed. 
2. Critical statistic. 
From the Chi-Square Distribution Table with  and 

 find 

    

3. Test statistic. 

   

4. Decision. 
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Do not reject . 
5. Interpretation. The population appears to be normally 

distributed. 
▢ 
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15.2 Contingency Tables 

The goodness of fit test may be viewed as a frequency analogue of 
comparing a sample mean from one population to a hypothesized 

 mean, , with the one-sample -test : 

With the goodness of fit  test we compare an observed 
frequency profile with the  (expected) frequency profile : 

After studying the one-sample -test we moved on to the two-
sample -test (and ANOVA) where we compared populations with 
each other directly : 
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Similarly, we will now move from comparing the observed 
frequencies from one group to a fixed profile to comparing the 
observed frequencies from several groups with each other : 

In the process we are testing to see if there is any relationship 
between the different groups and the categories labeled on the 
axis. 

To do this comparison, we need to make two contingency tables, 
one for the observed frequencies and one for the expected 
frequencies. The expected frequency table is computed from the 
values in the observed frequency table and not from some 
predetermined expected frequencies1. That way, the expected 

1. The equivalent procedure in the goodness of fit test is to 
distribute the expected frequencies uniformly among 
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frequencies contingency table represents the frequencies expected 
if there were no difference between the groups. 

The contingency table setup looks like : 
. 

Group 

Category 

1 2 3 4 

1 

2 

3 

The numbers in the table will be frequencies. The contingency table 
has  rows with  = number of categories and  columns with 
= number of groups2. 

To compute the expected frequency table, we need to sum the 
rows and columns in the expected frequency table. We can write the 
sums at the ends of the rows and columns. So we will take our data 
and make the observed frequency contingency table : 

the categories by setting . This is the chance 
or completely random distribution for the expected 
frequencies. 

2. At this point the labels "group" and "category" are 
arbitrary. 
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Group  

Category 

1 2 3 4  

1 

2 

3 

   

where  is the sum of row ,  is the sum of column  and  is 
the sum of all the entries in the table ( = sum of row sums = sum of 
column sums). Using the sums, the expected frequency table is : 

Group 

Category 

1 2 3 4 

1 

2 

3 

The expected frequency contingency table is the numerical 
expression of . In words:  is the hypothesis that the groups 
and categories are independent. Therefore this  contingency table 
test is called the  test for independence. 

The test statistic for this test is 
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with  where  is the number of rows 
and  is the number of columns. 

Example 15.3 : Is there a relationship between the number of years 
spent in college and where you live? Test at . The data, 
in table form are : 

years spent in college (group) 

No 
College 

4 yr 
degree 

Advanced 
degree sums 

living 
location 

(category) 

Urban 15 12 8 = 35 

Suburban 8 15 9 = 32 

Rural 6 8 7 = 21 

sums = 29 = 35 = 24 = 88 

In the table above, we have done some data reduction in summing 
the rows and columns. Continuing with the solution : 

0. Data reduction. Compute the expected frequency table : 

No College 4 yr degree Advanced 
degree 

Urban 

Suburban 

Rural 

1. Hypotheses. 
(Pay close attention to the wording.) 

: Living location (category) is independent of the amount of 
education (group). 

: Living location (category) is dependent of the amount of 
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education (group). 

2. Critical statistic. 
Use the Chi-Square Distribution Table with  and 

to find 

    

3. Test statistic. 

   

4. Decision. 
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Do not reject . 
5. Interpretation. The living location is independent of education. 

▢ 

15.2.1 Homogeneity of proportions  test 

This test is a special case of the  test of independence where 
the number of rows is always 2 and the total number of data points 
per column (the sum of frequencies per column) is the same for 
every column. With these restrictions we have a test that compares 
proportions between the populations represented by the columns. 
In particular, the  test of independence generalizes the two-
sample proportions test that we covered in Chapter 11. The first row 
of the contingency table represents , the sample proportion of 
interest and the second row represents , the sample 
proportion not of interest. In using the homogeneity of proportions 
test, it is not necessary to explicitly compute the proportions . 

Example 15.4 : We wish to test the hypothesis, at 
that different proportions of students in different high schools drive 
their own car given the following data : 
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School 1 School 2 School 3 sums 

Own Car 18 22 16 = 56 

Parent’s Car 32 28 34 = 94 

sums = 50 = 50 = 50 = 150 

0. Data reduction. The first step in data reduction has been 
completed by summing the rows and columns. Using these sums, 
the expected frequencies are : 

School 1 School 2 School 3 

Own Car 18.67 18.67 18.67 

Parent’s Car 31.33 31.33 31.33 

1. Hypotheses : 

   

2. Critical statistic. 
Using the Chi-Square Distribution Table with  and 

 find 

    

3. Test statistic. 

    

4. Decision. 
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Do not reject . 
5. Interpretation. We were unable to find any difference in the 

proportion of students who drive their own car between the schools 
at . 

▢ 
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15.3 SPSS Lesson 13: 
Proportions, Goodness of Fit, 
and Contingency Tables 

15.3.1 Binomial test 

Up to now we haven’t seen how to use SPSS to handle tests of 
proportion. Recall that we used the  approximation of the binomial 
distribution to do that test. SPSS can do the test using the binomial 
distribution directly. From the Data Sets, open “Cancer.sav” : 

SPSS screenshot © International Business Machines Corporation. 

Notice that the data are entered in frequency table form, so we need 
to tell SPSS this through the Data → Weight Cases menu and enter : 
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SPSS screenshot © International Business Machines Corporation. 

where the “Weight cases by” button has been pushed and the 
number variable has been identified as the frequency variable. 
Double check that “Weight On” appears at the lower right corner 
of the Data View pane. Now pick Analyze → Nonparametic Tests → 
Legacy Dialogues → Binomial to get and set : 

SPSS screenshot © International Business Machines Corporation. 

Alright, what are we doing here? We are doing a single sample 
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proportions test where Other Door is the quality and proportion 
of interest and Door Behind is the quality proportion 
not of interest. With Test Proportion set at 0.5, we are testing 

    

The output is straightforward: 

SPSS screenshot © International Business Machines Corporation. 

It says ,  and to reject . 

15.3.2.  goodness of fit test 

From the Data Sets, open “CancerRecovery.sav” : 
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SPSS screenshot © International Business Machines Corporation. 

Going into the Variable View menu, you can check the number 
of qualitative values for each variable by looking at the Values 
attribute. For the Cancer status variable, the labels are : 

-1 = “Dead” 
0 = “Under Treatment” 
1 = “Recovered” 

Pick Analysis → Nonparametric Tests → Legacy Dialogues → Chi-
square to get and set up : 
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SPSS screenshot © International Business Machines Corporation. 

Here I have, somewhat randomly, explicitly set the expected 
frequencies. With the Expected Values button “All categories equal”, 
the expected frequencies will be  in 
this case. But I have set  (for “less depressed”), 

 (for “same”), and  (for “more depressed”). 
(Make sure that  or who knows what SPSS will do.) The 
output is : 

SPSS screenshot © International Business Machines Corporation. 

15.3 SPSS Lesson 13: Proportions, Goodness of Fit, and Contingency
Tables  |  461

https://openpress.usask.ca/app/uploads/sites/76/2020/01/CancerRecovery-2-Chp-15.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/CancerRecovery-2-Chp-15.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/CancerRecovery-3-Chp-15.png
https://openpress.usask.ca/app/uploads/sites/76/2020/01/CancerRecovery-3-Chp-15.png


The first table lists the observed and expected frequencies 
explicitly. The second table gives , 

 and . So we (not unsurprisingly 
since I picked the expected frequencies randomly) reject 

. 

15.3.3. Contingency tables:  test of 
independence 

From the Data Sets, open “CancerRecoveryAge.sav” : 

SPSS screenshot © International Business Machines Corporation. 

Notice that the data are in frequency table form so I went into 
“weight cases” and chose number as the frequency variable — note 
the “Weight On” in the lower right corner. Explicitly the frequency 
table is the contingency table : 
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Under 18 Between 18 
and 50 Above 50 

Dead 6 7 12 

Under 
Treatment 7 7 9 

Recovered 22 21 14 

Notice that the sums of all the columns is 35 so this is a 
homogeneity of proportions set-up. Running the analysis is a little 
different. Pick Analysis → Descriptive Statistics → Crosstabs to get : 

SPSS screenshot © International Business Machines Corporation. 

We need to set-up the submenus. First the Statistics menu, checkoff 
Chi-Square. 
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SPSS screenshot © International Business Machines Corporation. 

In Cells make sure Observed and Expected are checked : 

SPSS screenshot © International Business Machines Corporation. 

Now you can run the analysis to get (ignoring the Case Processing 
Summary table) : 
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SPSS screenshot © International Business Machines Corporation. 

The first table is an explicit observed/expected frequency table 
with the row, column and total sums given. The second table gives 

,  and 
 so we can not reject  and conclude that “Deads” 

and “Under 18” are independent. 
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16. NON-PARAMETRIC 
TESTS 

The definition of what a non-parametric test is best understood by 
comparing parametric tests to non-parametric tests. 

Parametric Tests Non-parametric Tests 

Estimate a parameter like , , or 
 (proportion) prior to hypothesis 

testing. 

Hypothesis testing without 
parameter estimation. Involves 
counting or ranking. 

Generally require a population to 
be normally distributed. “Distribution-free statistics”. 

Only works for quantitative data. Works for both qualitative and 
quantitative data. 

More power. Less power. 

Need more detailed data (more 
information). 

Work with less detailed data (less 
information). 

Work with smaller sample sizes. Need large sample sizes. 

If you have a choice, generally a parametric test is preferred to 
a non-parametric one because it has more power. On the other 
had, if you reject  with a non-parametric test, you can be more 
confident in your decision. 
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16.1 How to Rank Data 

Many of the non-parametric tests that we’ll look at require that you 
rank data. Here we review the conventions for ranking that we need 
: 

• Assign rank from the lowest score to the highest score. 
• If there are ties, assign the average rank to all ties. 

Example 16.1 : 

Subject Score Rank 

A 8 4 

B 6 3 

C 10 5 

D 3 2 

E 1 1 

▢ 
Example 16.2 : 

Subject Score Rank 

A 8 4 

B 6 2.5 

C 10 5 

D 6 2.5 

E 1 1 
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B and D are tied for 2nd and 3rd place, so they are ranked at the 
average of 2 and 3, 2.5. 

To determine the ranking, it may help to sort the data based on 
rank : 

Subject Score Rank 

E 3 1 

D 6 2.5 

B 6 2.5 

A 8 4 

C 10 5 

This way ties are easier to see. 
▢ 
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16.2 Median Sign Test 

The median sign test is a test of a null hypothesis about the median, 
MD, of a population based on the binomial distribution. To use the 
test, every subject is assigned a score of ,  or  depending on 
whether their data point value is greater than, the same as or less 
than the  median. 

Since the test is based on the binomial distribution, there are two 
cases we need to consider. One for small samples and one for large 
samples where the  approximation to the binomial distribution can 
be used. 

Case 1 : small samples ( ). Here the test statistic is 

    
and the critical statistic,  comes from the Sign Test Critical 

Values Table for a given , 1 or 2 tailed test and a value for  where 

    
Reject  if . 
Case 2 : large samples ( ). With  as defined for 

case 1, the test statistic is 

    

where 

    
the critical statistic is  obtained in the usually way using 

either the Standard Normal Distribution Table or (recommended) 
the t Distribution Table. Reject  if  is in the critical region. 

There are 3 sets of hypotheses about the null hypothesis median, 
 : 
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Two-tailed Left-tailed Right-tailed 

Example 16.3 (Small sample size, case 1.). 
Given the following snow cone sales data : 

18  43  40  16  22 
30  29  32  37  36 
39  34  39  45  28 
36  40  34  39  52 

test the conjecture that the median snow cone sales is 40. 
Solution. 
0. Data reduction. 
Reduce the data to ,  and  signs relative to  : 

        
        
        
       

so (no. of ) = 3, (no. of ) = 15 and . 
1. Hypothesis. 

    

2. Critical statistic. 
Using the Sign Test Critical Values Table with  and 

 for a two-tailed test find 

    
3. Test statistic. 

    

4. Decision. 
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so reject . 
5. Interpretation. 
There is enough evidence to reject the claim that the median 

number of snow cone sales is 40. 
▢ 

Example 16.4 : (Large sample size, case 2.) 
We wish to test the claim that the median lifetime of 

manufactured rubber washers is greater than or equal to 8 years. 
We are given the following data from a sample of 50 washers : 

• 21 washers in our sample last more than 8 years 
• 29 washers in our sample last less than 8 years 
• (none last exactly 8 years). 

Solution. 
0. Data reduction. 
Label the washer that last longer than 8 years with a  and the 

others with a . So (no. of ) = 21 and (no. of ) = 29. 
1. Hypothesis 

: MD  8 (claim) 
: MD  8 

2. Critical statistic. 
Using the t Distribution Table, last  line,  for a one-

tailed test we find 

    
3. Test statistic. 

    

so 
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4. Decision. 

Do not reject . 
5. Interpretation. 
There is not enough evidence, at , to say that washers 

last less that 8 years. 
▢ 
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16.3 Paired Sample Sign Test 

Here we have two measurements from each subject, typically before 
and after. If the difference between measurements is , assign a 

, if , assign a , if 0 assign a 0. (Be sure to keep the direction 
of subtraction consistent with the hypothesis.) We again have 2 
cases, for small ( ) and large ( ) samples, as with 
the median sign test. The critical and test statistics are the same as 
the median sign test. We’ll work through an example with a small 
sample. 

Example 16.5 : We have the following data on number of ear 
infections on swimmers before and after taking a medication that is 
hypothesized to prevent infections : 

Swimmer Infections 
before, 

Infections 
after, 

Difference (
) 

A 3 2 + 

B 0 1 – 

C 5 4 + 

D 4 0 + 

E 2 1 + 

F 4 3 + 

G 3 1 + 

H 5 3 + 

I 2 2 0 

J 1 3 – 

In the last column, we have assigned  when , 
when  and  when . We are 
interested in reduced infections so  is “good” for this situation. 
Test if the reduction in infections is significant. 

1. Hypothesis. 
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: MD difference  0 
: MD difference  0 

2. Critical statistic. 
Use the Sign Test Critical Values Table with  = (no. of ) + (no. 

of ) = 7 + 2 = 9 and  with a one-tailed test to find 

    
3. Test statistic. 

    

4. Decide. 

    
so do not reject . 
5. Interpretation. 
There is not enough evidence to say that there is a reduction in 

the number of infections. 
▢ 
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16.4 Two Sample Wilcoxon 
Rank Sum Test 
(Mann-Whitney U Test) 

This test is an alternative to the two sample -test. The test assumes 
that the population of differences has a symmetric distribution and 
tests the following hypothesis pair : 

: The means of the two populations are the same. 
: The means of the two populations are the different. 

or 
: 

: 
which is exactly the hypothesis tested by the -test. The samples 

are independent (no pairs) and, although this test compares means 
(parameters) and not medians, it does not use the values of the 
means to do the comparison — therefore this is a non-parametric 
test. It is based on a binomial distribution. 

The test statistic is 

    

where 
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Also we need  in order for the  distribution to 
be a good fit to the binomial distribution. This is our first non-
parametric test that uses rank. Let’s follow an example to see how it 
all works. 

 
Example 16.6 : Given the following obstacle course times, is the 

army or marines significantly faster? 
Army: 15 18 16 17 13 22 24 17 19 21 26 28 

Marines: 14 9 16 19 10 12 11 8 15 18 25 
Solution. 
0. Data reduction. 
We need to assign group 1 to the smaller sample. So let 

group 1 = Marines (M) and 
group 2 = Army (A) and 

We don’t need to compute the means to compare them but just 
out of curiosity we note that  and 
so if there is a significant difference between the means then the 
marines are faster. 

This is our first rank test so we need to apply the methods of 
Section 16.1. For this test, we rank the combined data : 
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Group Time Rank Count 

M 8 1 1 

M 9 2 2 

M 10 3 3 

M 11 4 4 

M 12 5 5 

A 13 6 6 

M 14 7 7 

M 15 8.5 8 

A 15 8.5 9 

M 16 10.5 10 

A 16 10.5 11 

A 17 12.5 12 

A 17 12.5 13 

M 18 14.5 14 

A 18 14.5 15 

M 19 16.5 16 

A 19 16.5 17 

A 21 18 18 

A 22 19 19 

A 24 20 20 

M 25 21 21 

A 26 22 22 
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A 28 23 23 

Notice how the last Count column is useful for assigning ranks to 
the ties. We have also drawn boxes around the marines because 
they are the smaller group and we need the sum of the ranks of the 
smaller group : 

   

1. Hypothesis. 

    

2. Critical statistic. 
Using the last ( ) line in the t Distribution Table with 

for the two-tailed test we find 

    
3. Test statistic. 
We already have . Now compute: 
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4. Decision. 
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Reject . 
5. Interpretation. The marines are significantly faster. 

▢ 
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16.5 Paired Wilcoxon Signed 
Rank Test 

This test is an alternative to the paired sample -test; it is a 
hypothesis test about means. It is based on a binomial distribution 
and we again have two cases, one for small samples and one for 
large samples. 

Case 1. Small samples ( ). 
Test statistic : 

Critical statistic :  from the Wilcoxon Signed-Rank Test 
Critical Values Table for which you need ,  and whether you 
want a one- or two-tailed test. Reject  if . 

Case 2. Large samples ( ). 
Test statistic : 

    

Critical statistic :  from the t Distribution Table. 
 
Example 16.7 : Using the data given below for numbers of 

shoplifters at some store for a time before a security guard was 
hired and after a security guard was hired, decide if the expense of 
a security guard is worth it. 

Here’re the shoplifter data, before and after the hiring of a 
security guard, combined with some data reduction calculations : 
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Day 
(Subject) 

Before After |D| Rank Signed 
Rank 

M 7 5 2 2 3.5 3.5 

T 2 3 -1 1 1.5 -1.5 

W 3 4 -1 1 1.5 -1.5 

T 6 3 3 3 5 5 

F 5 1 4 4 6 6 

S 8 6 2 2 3.5 3.5 

S 12 4 8 8 7 7 

The data reduction columns include the essential steps of 
computing the difference , it’s absolute value , the rank of 
the absolute value and, finally, the ranks with the sign of  added. 
It may be useful to order the data, like we did in Example 16.6, to 
make the ranking easier. As always, the order of the difference, and 
it’s sign. is important for interpretation and getting the direction of 
one-tailed tests right. In this case, we would hope that the number 
of shoplifters would go down after the security guard was hired; a 
positive difference would be good. 

1. Hypothesis. 
With the assignment 1 = before and 2 = after : 

or 

2. Critical statistic. 
From the Wilcoxon Signed-Rank Test Critical Values Table with 

 for a two-tailed test and  find 

    
3. Test statistic. First compute: 
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so 

    
4. Decision. 

    
so do not reject . 
5. Interpretation. 
Fire the security guard. 

▢ 
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16.6 Kruskal-Wallis Test (H 
Test) 

The Kruskal-Wallis Test is a non-parametric one-way ANOVA. It 
detects differences in means between groups. The distribution 
behind the test is a new discrete distribution called the 
distribution that assumes the group samples come from populations 
with identically shaped distributions. We will use a 
approximation of  for computing the critical statistic so, for that 
approximation, we need  for , where  is 
the number of groups. The hypothesis tested is : 

: means of groups all equal 
: means of groups not all equal 

As mentioned, the critical statistic is  with 

degrees of freedom which we can find using the Chi Squared 
Distribution Table. 

The test statistic is : 

    

where 
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The test is always right-tailed. 
 
Example 16.8 : With the following data on ml of potassium/quart 

in brands of drink, determine if there is a significant difference in 
the potassium content between brands. 

Brand A Brand B Brand C 

4.7 5.3 6.3 

3.2 6.4 8.2 

5.1 7.3 6.2 

5.2 6.8 7.1 

5.0 7.2 6.6 

0. Data reduction. 
We need to rank the data. Ranking “in place” we have : 
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Brand 
(IV) DV Rank 

A 4.7 2 

A 3.2 1 

A 5.1 4 

A 5.2 5 

A 5.0 3 

B 5.3 6 

B 6.4 9 

B 7.3 14 

B 6.8 11 

B 7.2 13 

C 6.3 8 

C 8.2 15 

C 6.2 7 

C 7.1 12 

C 6.6 10 

Using A = 1, B = 2, c = 3, the sums of the ranks for each group are 

    

Finally note that  and . 
1. Hypothesis. 

 : no differences in means between the brands 
 : some differences exist 

2. Critical statistic. 
From the Chi Squared Distribution Table with , 

 find 
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3. Test statistic. 

    

4. Decision. 

Reject . 
5. Interpretation. 
At least one of the brands is different. Since  is far less than 

the rank sums of the other two brands, we know that Brand A is 
different before we do any kind of post hoc testing. 

▢ 
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16.7 Spearman Rank 
Correlation Coefficient 

This is a rank alternative to the Pearson correlation coefficient that 
may be used when the assumption of normality is not met for 
hypothesis testing. It is defined by 

    

where 

    

where  =  rank of point  and  =  rank of point . 
To test  versus  use  itself as the 

test statistic and  from the Rank Correlation Coefficient 

Critical Values Table as the critical statistic. (Note that the Rank 
Correlation Coefficient Critical Values Table requires .) 
Reject  if . 

 
Example 16.9 : Determine if the Spearman correlation between 

two textbook ratings, data given below, is significant. 
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Book rating 1 
( ) 

rating 2 
( ) rank rank 

A 4 4 2 1 1 1 

B 10 6 5 2 3 9 

C 18 20 7 8 -1 1 

D 20 14 8 6 2 4 

E 12 16 6 7 -1 1 

F 2 8 1 4 -3 9 

G 5 11 3 5 -2 4 

H 9 7 4 3 1 1 

Note the preliminary data reduction (ranking and rank differences, 
) done to the right side of the table. 
1. Hypothesis. 

(Note that population values are inferred in the hypotheses 
statement.) 

2. Critical statistic. 
From the Rank Correlation Coefficient Critical Values Table with 

 and  find 

    
3. Test statistic. 

    

4. Decide. 

    
so do not reject . 
5. Interpretation. 
There is no significant correlation between the ratings. 

16.7 Spearman Rank Correlation Coefficient  |  491



▢ 
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16.8 SPSS Lesson 14: 
Non-parametric Tests 

16.8.1 Mann Whitney/Wilcoxson Rank Sum 

The Mann Whitney/Wilcoxson Rank Sum tests is a non-parametric 
alternative to the independent sample -test. So the data file will 
be organized the same way in SPSS: one independent variable with 
two qualitative levels and one independent variable. Open 
“RetinalAnatomyData.sav” from the textbook Data Sets : 

SPSS screenshot © International Business Machines Corporation. 

Choose Analyze  Nonparametric Tests  Legacy Dialogues  2 
Independent Samples. Then set-up : 
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SPSS screenshot © International Business Machines Corporation. 

Running the test produces : 

SPSS screenshot © International Business Machines Corporation. 

The first table has sums of the ranks including the sum of ranks of 
the smaller sample, , and the sample sizes  and  that you 
could use to manually compute  if you wanted to. The test 
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statistic  shows up in the second table along with 
which means that you can marginally reject  for a two-tail test. 
When we did this test by hand, we required ,  so that 
the  test statistic would be valid. In the SPSS output two other test 
statistics,  and  that can be used for smaller sample sizes. The 
exact -value is given in the last line of the output; the asymptotic 

-value is the one associated with . When the asymptotic 
-value equals the exact one, then the  test statistic is a good 
approximation — this should happen when , . 

16.8.2 Paired Wilcoxon Signed Rank Test 
and Paired Sign Test 

Open “MigraineTriggeringData.sav” from the textbook Data Sets : 

SPSS screenshot © International Business Machines Corporation. 

We will see if there is a significant difference between pay and 
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security (  ). Pull up Analyze  Nonparametric Tests 
 Legacy Dialogues  2 Related Samples to get : 

SPSS screenshot © International Business Machines Corporation. 

The output for the paired Wilcoxon signed rank test is : 

SPSS screenshot © International Business Machines Corporation. 

From the output we see that . The test statistic 
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 with  so the mean difference is 
significantly different from zero. 

The output for the paired sign test (  MD difference ) is : 

SPSS screenshot © International Business Machines Corporation. 

Here we see (remembering the definitions) that . Since 
 we can conclude that “Skipping Meal” is significantly 

different from “Stress at Work” (more negative differences and the 
difference is significant). 

16.8.3 Kruskal-Wallis Test 

Open “CancerTumourReduction.sav” from the textbook Data Sets : 
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SPSS screenshot © International Business Machines Corporation. 

The independent variable, group, has three levels; the dependent 
variable is diff. Choose Analyze  Nonparametric Tests  Legacy 
Dialogues  K Independent Samples and set up the dialogue menu 
this way, with 1 and 3 being the minimum and maximum values 
defined in the Define Range menu: 

SPSS screenshot © International Business Machines Corporation. 
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Running the test gives: 

SPSS screenshot © International Business Machines Corporation. 

There is enough information to compute the test statistic  which 
is labeled as Chi-Square in the SPSS output. That is 
and it is significant ( ) so at least one of the group 
means is significantly different from the others. Also we see 

. Notice that the sums of the ranks are not given 
directly but sum of ranks = Mean Rank  N. 
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16.10 Runs Test 

The runs test is a test for randomness. All statistical tests require 
random samples so this test may be used to check that a sample has 
been randomly collected. 

Definition : A maximal succession of identical (typically letters) in 
a sequence of values is a run. 

Example 16.10 : How many runs are there in each of the following 
sequences? 

F  F  F  M  M  F  F  F  F  M 
H  H  H  T  T  T  T 
A  A  B  B  A  A  B  B  A  A  B  B 

Count the runs. In this table you can see a bit of highlighting to 
help visually separate the runs. 

F  F  F  M  M  F  F  F  F  M 4 runs 

H  H  H  T  T  T  T 2 runs 

A  A  B  B  A  A  B  B  A  A  B  B 6 runs 

▢ 
If there are only 2 possible values for the outcome then the runs 

test can be used to test : 

   

The critical statistic is  from the Number of Runs Critical 
Values Table. We need  and  and  which are the number of 
times value 1 shows up in the sequence and the number of times 
value 2 shows up in the sequence. There will be two values for 

 for each choice of ,  and . 
The test statistic is  = the number of runs in the sequence. 
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Example 16.11 : Determine if the following sequence is random : 

F  F  F  M  M  F  F  F  F  M  F  M  M  M  F  F  F  F  M  M  F  F 
F  M  M 

0. Count the runs. 
F  F  F  M  M  F  F  F  F  M  F  M  M  M  F  F  F  F  M  M  F  F  F  M  M 
There are 10 runs. 
Here ,  (number of F values) and 

(number of M values). Following the standard hypothesis testing 
steps : 

1. Hypothesis. 
: Sequence is random. 

: Sequence is not random. 
2. Critical statistic. 
From the Number of Runs Critical Values Table with , 

 and  find 

    

Note that there are 2 values. Think of them this way : 

3. Test statistic. 
. 

4. Decision. 
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Do not reject . 
5. Interpretation. 
At  we cannot say that the sequence is not random. 

▢ 
We can use the runs test to test if a sample was selected from the 

population at random. To test if we have a random sample — the 
fundamental assumption behind every statistical test. Let’s see how 
that works in the next example. 

Example 16.12 : Was the following data collected at random? (Note 
that in order for this test to work, the data need remain in the order 
they were collected.) 

18, 36, 19, 22, 25, 44, 23, 27, 27, 35, 19, 43, 37, 32, 28, 43, 46, 
19, 20, 22 

0. Count the runs. 
First we need to convert this sequence to one with 2 values. Use 

the median to do that. The median can be found (by putting the 
numbers in order as usual) to be 27. Assign a  to the values above 
the median and a  to those below, discard values equal to the 
median : 

 –    +     –     –     –     +     –    +     –    +     +     +    +    +    +     –     –   
 – 
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This gives 9 runs. 
Now let’s do the hypothesis test : 
1. Hypothesis. 

 : the values came at random. 
 : no they didn’t. 

2. Critical statistic. 
From the Number of Runs Critical Values Table using 

,  (no. of ) and  (no. of ) find 

    

3. Test statistic. 
. 

4. Decision. 

Do not reject . 
5. Interpretation. 
The sequence appears to be random. 

▢ 
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17. OVERVIEW OF THE 
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17.1 Linear Algebra Basics 

At its most abstract level modern mathematics is based on set 
theory. Functions, , are maps that map an element in a domain set, 

, to a target, . 

The range of of  is the set , the set of all possible values 
of . Note that the range is a subset of the target, in set notation 
symbols:  where  means subset. 

17.1.1 Vector Spaces 

We specialize immediately to special sets called vector spaces and 
denote these sets by . Here  is the dimension of the vector 
space. Some examples : 

 = the set of real numbers = the number line : 
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 = the set of all pairs of real numbers written as a 
column vector. 

    

We have introduced some set symbol notation here. The basic 
notion for a set uses curly brackets with a dividing line: 

   

The dividing line | is read as “such that”, and the set symbol  is 
read as “belongs to”, so you would read the set defining  above 
as: “the set of column vectors such that  and  belong to the set 

“. 
The transpose of a column vector is an operation written as 

    

…which is known as a row vector. The transpose of a row vector is 
a column vector. 

Continuing with higher dimensions: 

508  |  17.1 Linear Algebra Basics



    

In general we have  dimensional space1: 

1. The number  will also mean sample size later on 
because you can organize a data set into a column vector 
of dimension . In fact, you give SPSS a data vector by 
entering a column of numbers as a "variable" in the input 
spreadsheet. 
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Notice that we are using the symbol  to abstractly represent a 
column vector. 

17.1.2 Linear Transformations or Linear 
Maps 

In general we can define maps, , from  : 

We will use the following abstract notation for a map: 
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where ,  —  gets mapped to  by  in this 
example. 

A linear map or a linear transformation is a map that abstractly 
satisfies : 

    
…where  and  (the domain of ). What this 

statement says is that, for a linear map, it does not matter if you 
do scalar multiplication and/or vector addition before (in ) or 
after (in ) the map , the answer will be the same. Scalar 
multiplication and vector addition2 are defined as follows, using 
example   : 

    

   

It turns out that any linear map from  to  can be 
represented by an  (rows  columns) matrix. Let’s look at 
some examples. 

Example 17.1 : A map from  to . 

2. Abstractly, a vector space is a set where scalar 
multiplication and vector addition can be sensibly 
defined. 
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Here  is a 1  2 matrix that defines a linear map 

. The map  takes the column vector  to the 

number  in . For example, the vector  gets mapped 

to 8. Notice how the matrix is applied to the vector. The row of the 
matrix is is matched to the column of the vector, the numbers are 
multiplied and then the column added. 

▢ 
Example 17.2 : A map from  to . 

    

Note that  gives us a nice compact 

way of writing the two equations: 

    

Linear algebra’s major use is to solve such systems of linear 
equations. Let’s try some numbers in 

. Say , then: 

   

…so  gets mapped to . 

▢ 
Example 17.3 : A map from  to 
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Notice that the size of the matrix is 2  3 to give a map from 
to . Again this is shorthand for 

    

Let’s look at some numbers. Say , then: 

   

…so  gets mapped to . 

▢ 

Exercises 

Compute: 
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17.1.3 Transpose of Matrices 

Just like vectors, matrices have a transpose where row and columns 
are switched. For example 

    

    

Note how, for square matrices (where the number of rows is the 
same as the number of columns), that transpose results in flipping 
numbers across the diagonal of the matrix. 
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17.1.4 Matrix Multiplication 

An  matrix can be multiplied with a  matrix to 
give an  matrix. For example, we can multiply a 
matrix with a  matrix to give a  matrix: 

    

Notice how the sizes of the matrices match so that the number 
of columns in the first matrix ( ) matches the number of columns 
in the second matrix — the ‘s kind of cancel to give the resulting 

 answer. 
Matrix multiplication represents a composition of linear maps. In 

the above example the situation is: 

Note that the matrix on the right is applied first. (If you wanted 
to apply the matrices to a vector in , you would would write the 
vector on the right.) 

When you multiply two square matrices  and  (both 
) then, in general, 
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Exercises 

Compute: 

    

and 

    

to see that the results are different. 

17.1.5 Linearly Independent Vectors 

From an abstract point of view, a set of p vectors 

    
in  are said to be linearly independent if the equation 

    
has only one solution: 

    
When vectors are linearly independent, you cannot express one 

vector as a linear combination of the other vectors. Geometrically 
(for example in  ) : 
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If ,  and  are all in the same plane then they are not 
linearly independent. In that case we could find  and  such that 

. 
In an  dimensional space it is possible to take, at most, a set of 
 linearly independent vectors. 

17.1.6 Rank of a Matrix 

Define : 
Row rank = the number of linearly independent row 

vectors in a matrix. 
Column rank = the number of linearly independent column 

vectors in a matrix. 
It turns out that: 

row rank = column rank = rank 
We won’t cover the mechanics of how one calculates the rank of a 

matrix (take a linear algebra course if you want to know). Instead we 
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just need to understand intuitively what the rank of a matrix means. 
Consider some simple examples : 

Example 17.4 : The  matrix 

    

has rank = 1 because one column is a multiple of the other: 

    

▢ 
Example 17.5 : The  matrix 

    

has rank = 2 because there is no way to find  such that 

    

▢ 
Example 17.6 : The  matrix 

    

has rank = 3. 
▢ 

Example 17.7 : The  matrix 

    

has rank = 2 since 
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▢ 

17.1.7 The Inverse of a Matrix 

For some square matrices ( )  it is possible to find an 
inverse matrix,  so that 

    
where  is the identity matrix that has 1 on the diagonal and 0 

everywhere else. 
For example, in : 

    

In : 

    

In : 

    

…etc. 
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Again, we won’t learn how to compute the inverse of a matrix but 
it is important to know that an  matrix  will have an 
inverse  if and only if rank . 

17.1.8 Solving Systems of Equations 

In general a system of linear equations can be represented by 

    
where ,  and  is an  matrix known 

as the {\em coefficient matrix}. Here  represents the known 
values and  represents the unknown values. 

There are 3 cases: 

1. , less equations than unknown. No unique solution. 
2. , number of equations = number of unknowns. 

• Rank , no unique solution. This is really the same as 
case 1 because at least one of the equations is redundant. 

• Rank . This has the unique solution . 

   3. , more equations than unknowns. 

• Rank , inconsistent formulation, no solution possible. 
• Rank  (  is of full rank). A least squares solution is 

possible and is given by : 

    
That last least squares solution is the punchline to this very quick 

overview of linear algebra. It is derived using differential calculus in 
the same way that least squares solutions were derived for linear 
and multiple regression. The existence of this least squares solution 
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allows us to unify many statistical tests into one big category called 
the General Linear Model. 
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17.2 The General Linear 
Model (GLM) for Univariate 
Statistics 

In abstract form, the GLM is 

    

where 

•  is the data vector, an  dimensional column vector. 
•  is the design matrix which is different from test type to 

test type. 

•  is the parameter vector, a lower -dimensional vector that 
summarizes the data in terms of the model given by the design 
matrix. 

•  is the error vector, the  dimensional column vector of 
deviations or differences between the model predictions and 
the data in . 

The solution for  is the least squares solution 

    

In terms of the linear algebra that we just reviewed, 
 (known as the pseudo-inverse) 

transforms the data vector  in data space ( ) to a vector  in 
parameter space ( ) that presumably explains the data. 
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17.2.1 Linear Regression in GLM Format 

We can express the linear regression model  in GLM 
format as 

    

Note, importantly, that the design matrix is 

    

…where the second column is composed of the IV values,  . 
This is typical for the GLM, the DV is represented by the data vector 
and the IV is represented by the design matrix. If we do the matrix 
multiplication the model is: 
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…so  is the prediction vector 

    

Abstractly, the GLM  is  and the 
components of  are clearly the deviations . 

The least squares solution 
written out explicitly for this linear regression case is (without going 
into the calculation details): 
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…and this is exactly the solution for  and  that we saw in 
Section 14.5: Linear Regression. 

Example 17.8 : Let’s look at the data of Example 14.3 in a new light. 
The data were : 
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Subject x y 

A 6 82 

B 2 86 

C 15 43 

D 9 74 

E 12 58 

F 5 90 

G 8 78 

and we found that  (intercept) and  (slope). 
In GLM format this all is: 

    

Exercise: Compute . 
▢ 
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17.2.2 Multiple Linear Regression in GLM 
Format 

The model for multiple linear regression with 2 IVs is: 
    
To see how to cast this model in GLM format, let’s take an 

size dataset with data vector 

    

…then the GLM  becomes (note the form of 
) : 

   

Doing the matrix multiplication and looking at the vector 
components brings us back to 
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The solution for  again is given by1 

. This is a prescription for deriving 
the regression formulae but we won’t dive into the details. 

The design matrix (the model) again maps the  dimensional 

data vector in  to a parameter vector  in . As with all 
these GLMs, the dimension of the parameter space  is smaller 
than the dimension  of the data space. Up until now we have 
been considering  and  as separate vector spaces but we 
can set things up with2  with the parameter space being 
a subspace of the data space; in the example here the parameter 
space is a 3-dimensional subspace of the 5-dimensional data space. 
That leaves another  dimensional subspace of the data space 
that is the noise space. Now we can start to see the signal and 
noise concepts again. We can also call the parameter space the 
model space or the signal space so that the -dimensional data 
space is composed of a -dimensional signal space and a 
-dimensional noise space. Perfect data would lie in the signal space 
but in reality the data vector has components in the noise space — 

1. A more appropriate notation for the parameter vector 
would be  to emphasize that it is an estimate from a 
sample of some population vector . But, as we did for 
the symbols  and  for correlation, we'll be a little 
sloppy with the notation we use for sample and 
population values. 

2. The set symbol  means "proper subset". 
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it has  degrees of freedom for generating random noise. We’ll 
briefly look at this aspect of data space again in Section 17.2.4. 

17.2.3 One-Way ANOVA in GLM Format 

There are two ways to formulate a GLM design matrix for one-way 
ANOVA. It depends on whether the grand mean is explicitly included 
in the model definition or not. The two model definitions are : 

1.) With the grand mean: 

    
…for group . 
2.) Without the grand mean: 

    
…for group . 
We’ll illustrate by means of a simple example that has 3 groups 

with 2 subjects per group how to construct the  corresponding 
to each case. 

Case 1 : With the grand mean. 

    

The first column of 1’s is for the grand mean and the last three 
columns are coding vectors for the groups. SPSS uses the GLM setup 
in its programming. When you enter data for a one-way ANOVA into 
SPSS, you enter an IV vector that looks like: 
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Such a vector is not in GLM form so SPSS takes your IV vector 
and, behind the scenes3, produces the 3 coding vectors: 

    

Using the  given above in the GLM, and setting , 
, we get: 

3. The actual operation of SPSS is a blackbox that may not 
run exactly as described here, but conceptually its GLM 
operation requires the pieces of  as described here. 
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…which, with matrix multiplication, expands out to 

    

    

    

    

    

    

The solution
4
 for  is: 

    

4. You may see that  here is not of full rank so that a 
least squares solution is not actually possible. But we 
pick out the solution, from the infinity of possible 
solutions for  that fits with what we'll find when we 
look at case 2 in which  is of full rank. 
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…where  is the grand mean of all the data ( ) and  is the 

mean of group . 
Case 2 : Without the grand mean. 

    

Now  only contains coding vectors. Using that design matrix 
in the GLM explicitly for our small example with  gives: 

    

Expanding this to the vector components gives: 

    

    

    

    

    

    

Solving  gives: 
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Let’s work through a numerical example. 
Example 17.9 : Given the one-way ANOVA data: 

DV Group (IV) 

5 1 

6 1 

7 1 

3 2 

2 2 

1 2 

12 3 

11 3 

7 3 

20 4 

21 4 

25 4 

…we set up the GLM explicitly without the grand mean : 
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The solution for  is 

    

…so: 
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Exercise 1 : Do the matrix multiplication and compute . 
Exercise 2 : Formulate  with the grand mean and compute . 
Hint: in that case 

    

…and  will be the same as in Exercise 1. 
▢ 
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17.2.4 Test Statistics in GLM Format 

In all GLM cases the inferential statistics (the  or 
values) come from an analysis of the  error (or residual) vector. 
Roughly, the approach begins with the observation that 

. The error vector has  degrees of 
freedom. Then we consider a variance5 that has the form 

    

The  and  statistics describe how the component values of 
will be distributed if  is true. 

In an ANOVA set up, for example, we can do post hoc testing using 
contrast vectors6, , and use the following formula for the  test 
statistic : 

    

…where  must be the version without the grand mean and 
is the parameter vector associated with  (all zeros usually). As 
examples of contrast vectors, if we have three groups then: 

5. Again we are being sloppy with sample and population 
symbols. 

6. A modern approach, that replaces the traditional 
omnibus ANOVA followed by post hoc testing, skips the 
ANOVA and jumps directly to comparing groups of 
interest using contrast vectors. 
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There are similar formulae for  that use the GLM matrices and 
vectors. 
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Appendix: Tables 

• Binomial Distribution Table (PDF) (Word) 
• Standard Normal Distribution Table (PDF) (Word) 
• t Distribution Table (PDF) (Word) 
• Chi Squared Distribution Table (PDF) (Word) 
• F Distribution Table (PDF) (Word) 
• Tukey Test Critical Values Table (PDF) (Word) 
• Pearson Correlation Coefficient Critical Values Table (PDF) 

(Word) 
• Rank Correlation Coefficient Critical Values Table (PDF) (Word) 
• Sign Test Critical Values Table (PDF) (Word) 
• Wilcoxon Signed-Rank Test Critical Values Table (PDF) (Word) 
• Number of Runs Critical Values Table (PDF) (Word) 
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https://openpress.usask.ca/app/uploads/sites/76/2020/05/Binomial-Distribution-Table.pdf
https://openpress.usask.ca/app/uploads/sites/76/2020/05/Binomial-Distribution-Table.docx
https://openpress.usask.ca/app/uploads/sites/76/2020/05/Standard-Normal-Distribution-Table.pdf
https://openpress.usask.ca/app/uploads/sites/76/2020/05/Standard-Normal-Distribution-Table.docx
https://openpress.usask.ca/app/uploads/sites/76/2020/05/t-Distribution-Table.pdf
https://openpress.usask.ca/app/uploads/sites/76/2020/05/t-Distribution-Table.docx
https://openpress.usask.ca/app/uploads/sites/76/2020/05/Chi-squared-Distribution-Table.pdf
https://openpress.usask.ca/app/uploads/sites/76/2020/05/Chi-squared-Distribution-Table.docx
https://openpress.usask.ca/app/uploads/sites/76/2020/05/F-Distribution-Table.pdf
https://openpress.usask.ca/app/uploads/sites/76/2020/05/F-Distribution-Table.docx
https://openpress.usask.ca/app/uploads/sites/76/2020/11/Tukey-Test-Critical-Values-Table.pdf
https://openpress.usask.ca/app/uploads/sites/76/2020/11/Tukey-Test-Critical-Values-Table.docx
https://openpress.usask.ca/app/uploads/sites/76/2020/11/Pearson-Correlation-Coefficient-Critical-Values-Table.pdf
https://openpress.usask.ca/app/uploads/sites/76/2020/11/Pearson-Correlation-Coefficient-Critical-Values-Table.docx
https://openpress.usask.ca/app/uploads/sites/76/2020/11/Rank-Correlation-Coefficient-Critical-Values-Table.pdf
https://openpress.usask.ca/app/uploads/sites/76/2020/11/Rank-Correlation-Coefficient-Critical-Values-Table.docx
https://openpress.usask.ca/app/uploads/sites/76/2020/11/Sign-Test-Critical-Values-Table.pdf
https://openpress.usask.ca/app/uploads/sites/76/2020/11/Sign-Test-Critical-Values-Table.docx
https://openpress.usask.ca/app/uploads/sites/76/2020/11/Wilcoxon-Signed-Rank-Test-Critical-Values-Table.pdf
https://openpress.usask.ca/app/uploads/sites/76/2020/11/Wilcoxon-Signed-Rank-Test-Critical-Values-Table.docx
https://openpress.usask.ca/app/uploads/sites/76/2020/11/Number-of-Runs-Critical-Values-Table.pdf
https://openpress.usask.ca/app/uploads/sites/76/2020/11/Number-of-Runs-Critical-Values-Table.docx
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